

# Flexible group-sequential designs with treatment selection

## **Nigel Stallard and Tim Friede**

Warwick Medical School

THE UNIVERSITY OF WARVICK

#### Outline

- 1. Aim Seamless phase II/III designs
- 2. Background
  - 2.1 Standard group-sequential approach
  - 2.2 Select best treatment at first analysis
  - 2.3 Strong control of FWER
- 3. Flexible group-sequential boundary
- 4. Simulation study
- 5. Conclusions





# 1. Aim - Seamless phase II/III clinical trials

#### Phase II trials (exploratory)

- Early trials to assess treatment efficacy
- Error rates not tightly controlled
- Select one of several treatments/doses for further development

#### Phase III trials (confirmatory)

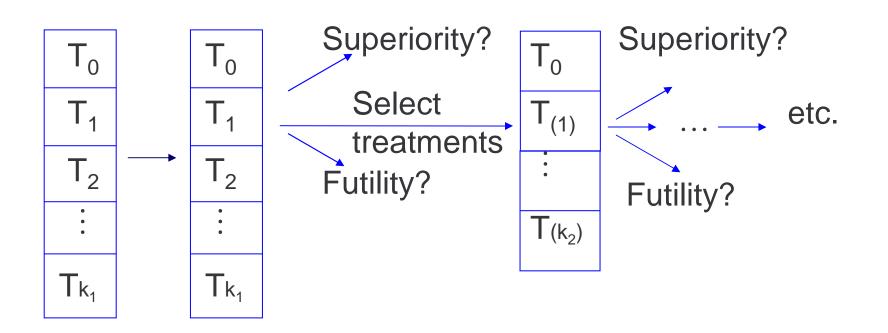
- Large-scale controlled trials
- Comparison of single experimental treatment with control
- Error rates controlled definitive conclusions

#### Aim: combine these two phases in a seamless design





Start Interim 1 Interim 2 Interim N



 $T_0$ : Control Treatment  $T_1, ..., T_{k_1}$  Experimental Treatments Aim: control FWER in strong sense





# 2. Background

**2.1 Standard group-sequential approach (** $k_1 = 1$ **)** (Jennison and Turnbull, 2000)

```
\theta measures superiority of T<sub>1</sub> over T<sub>0</sub>
```

```
Test H_0: \theta = 0 vs. H_A: \theta > 0
```

At look *j* calculate  $(S_j, \mathcal{I}_j)$ , efficient score and information for  $\theta$ stop if  $S_j \leq l_j$ , stop and reject  $H_0$  if  $S_j \geq u_j$ 

Obtain null distribution of *S* numerically using  $S_1 \sim N(\theta Z_1, Z_1), S_j - S_{j-1} \sim N(\theta (Z_j - Z_{j-1}), Z_j - Z_{j-1})$ 

Find boundaries with  $Pr(reject H_0 \text{ by look } j; H_0) = \alpha^*(j)$ for specified  $\alpha^*(1) \leq \ldots \leq \alpha^*(N) = \alpha$ 





# **2.2 Select best treatment at first analysis** ( $k_2 = 1$ )

(Stallard and Todd, 2003)

```
\theta_i measures T<sub>i</sub> over T<sub>0</sub>
Test global null hypothesis H_0: \theta_1 = \dots = \theta_k = 0
At look 1
  calculate (S_{i1}, \mathcal{I}_{i1}), efficient score and information for \theta_i
  let \lambda = \operatorname{argmax} \{S_i\}
  stop if S_{\lambda 1} \leq l_1, stop and reject H_0 if S_{\lambda 1} \geq u_1
  else continue with T_{\lambda} and T_{0}
At look j (1 < j \leq N)
  calculate (S_{\lambda i}, \mathcal{I}_{\lambda Ii})
  stop if S_{\lambda i} \leq l_i, stop and reject H_0 if S_{\lambda i} \geq u_i
Obtain null distribution of S_{\lambda i}
Find boundary to satisfy spending function constraint
```





#### **2.3 Strong control of FWER**

Consider test of  $H_{0K}$ :  $\theta_i = 0 \forall i \in K \subseteq \{1, ..., k_1\}$  $\max_{i \in K} \{S_{i1}; H_{0K}\} \leq_{st} \max\{S_{i1}; H_0\} \Rightarrow \text{ control error rate for } H_{0K}$ 

Hence by CTP control I error rate for  $H_{0i}$  in strong sense

Can also select treatment other than best and use same stopping boundary





#### 3. Flexible group-sequential boundary

At look *j*  
calculate 
$$(S_{i1}, \mathcal{I}_{i1})$$
 for all current treatments  
let  $X_{ij} = S_{ij} - S_{ij-1}$   
let  $X_j^{max} = \max\{X_{ij}\}$   
let  $S_j^{max} = X_1^{max} + \dots + X_j^{max}$ 

Obtain null distribution of  $S_j^{max}$ Find boundary to control type I error rate for monitoring  $S_j^{max}$ 

Stop  $T_i$  if  $S_{ij} \leq l_j$ , stop  $T_i$  and reject  $H_{0i}$  if  $S_{ij} \geq u_j$ 

Can select any treatments since  $S_{ij} \leq_{st} S_j^{max}$ Control FWER in strong sense as previously





#### 4. Simulation study

Start with  $k_1 = 3$  treatments Use triangular test spending function with 5 looks with power 0.8 when  $\theta_1 = \theta_2 = 0$ ,  $\theta_3 = 0.5$  if  $k_2 = 1$ Drop  $T_i$  if  $S_{ij} \ge u_j$  or  $S_{ij} \le l_j$  or if  $\hat{\theta}_i < \max{\{\hat{\theta}_i\}} - \varepsilon$ 

Estimate type I error rates pr(reject any  $H_{0i}$ ;  $H_0$ ) pr(reject  $H_{01}$  or  $H_{02}$ ;  $H_{01}$ ,  $H_{02}$ ) for range of  $\theta_3$  values

Estimate power

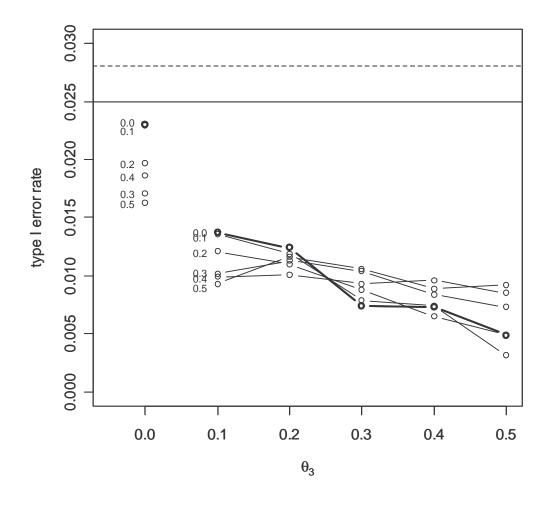
pr(reject  $H_{03}$ ;  $H_{01}$ ,  $H_{02}$ ) for range of  $\theta_3$  values

Based on 10,000 simulated trials per scenario





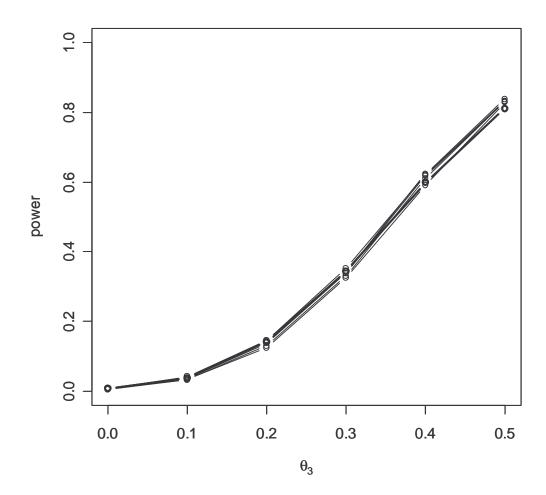
#### Simulated type I error rates for range of $\varepsilon$ and $\theta_3$ values



WARWICK



Simulated power for range of  $\varepsilon$  and  $\theta_3$  values



WARWICK



## 4. Conclusions

The new approach

- enables construction of boundary using group-sequential approach
- allows flexible dropping of treatments at any stage
- strongly controls FWER
- maintains power relative to Stallard and Todd design



