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1. Situation

For j=1,…,ni and i=1,…,k, let Xij denote the j th observation under the i th

treatment. Suppose the Xij to be independently normal with means µi

and possibly unequal variances σi
2. We are interested in the vector of 

ratio contrasts γ = (γ1,…,γq)T where for 1 ≤ l ≤ q

The vectors cl = (cl1,…,clk)T and dl = (dl1,…,dlk)T consist of real constants. 
The hypothesis to test is

against several alternatives due to given testing problems and for given 
relative thresholds θ1,…,θq .

Problem: Existing approaches are not robust!

3. Competing approaches
HOM: Multiple contrast test (MCT) for homogeneous variances and 

originally for difference contrasts; pooled sample variance;
correlations without variance estimator; common degree of
freedom
� same quantile for all contrasts

GH: Originally for all-pair comparisons as a difference contrast 
(Games and Howell, 1976); separate sample variances; 
correlations without variance estimator; separate degrees of 
freedom due to Satterthwaite (1946)
� separate quantiles for the contrasts

HTL: Originally for unbalanced settings (Hochberg and Tamhane, 
1987) or for special contrasts only (Tamhane and Logan, 2004); 
separate sample variances; average of correlations and degrees 
of freedom as in PI
� same quantile for all contrasts

4. Simulation studies

• Different settings and allocations, numbers of treatments, contrasts

• Global and local α level focused (weak and strong control of FWER)

• 100000 simulation runs in statistic software R (mvtnorm)

Example: Dunnett contrast, one-sided, θi = 1.25(1 ≤ i ≤ q), α = 0.05

_______________________________________________

Setting HOM GH PI HTL

_______________________________________________
n=(10,10,10),

σ=(10,10,50) 0.0471 0.0556 0.0496 0.0506
n=(4,13,13),

σ=(10,10,50) 0.0055  0.0654 0.0527 0.0585
n=(13,13,4),

σ=(10,10,50) 0.1970 0.0545 0.0514 0.0770
n=(10,10,10),

σ=(30,30,30) 0.0492     0.0487     0.0485     0.0487

_______________________________________________
n=(10,10,10,10,10),

σ=(10,10,10,10,50) 0.0634 0.0562 0.0498     0.0496
n=(6,11,11,11,11),

σ=(10,10,10,10,50) 0.0338 0.0619 0.0500     0.0485
n=(11,11,11,11,6),

σ=(10,10,10,10,50) 0.1462 0.0573 0.0520 0.0593
n=(10,10,10,10,10),

σ=(30,30,30,30,30) 0.0497     0.0500     0.0493     0.0493

________________________________________________

Results:

• HOM does not control the α level

• PI almost exact, tightest α ranges

• GH and HTL often too both liberal and conservative, respectively

• GH differs more dependent on the special contrasts

• HTL differs more dependent on settings, widest α ranges

6. Conclusions

• Adjusted degrees of freedom not sufficient to handle
heteroscedasticity, plug-in variance estimators necessary

• New approach (PI) keeps FWER best for all contrasts and settings
• Taking averages of correlations and degrees of freedom too rough
• Also other approaches studied which take the minimum (conservative)

or maximum (liberal) of the Welch-adjusted degrees of freedom,
respectively

• Same theory also considered for MCT of DIFFERENCES in means
with similar results

• R code available from first author
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2. Procedure
Test statistic for 1 ≤ l ≤ q:

� Separate sample variances
Degrees of freedom for 1 ≤ l ≤ q :

� Due to Satterthwaite (1946)
Correlation matrix R = (ρlm) with (1 ≤ l ≠m ≤ q)

� Plug-in of the sample variances

So, each test statistic Tl (1 ≤ l ≤ q ) is compared with a separate – „its 
own“ – quantile coming from a q-variate t-distribution with adjusted 
degrees of freedom and a correlation matrix for which a variance plug-
in is used. This procedure is referred to as PI.
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5. Simultaneous confidence intervals

Lower bounds of approximate (1−α)100% SCI of PI for γ = (γ1,…,γq)T:
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