An Application of the Closed Testing Principle to Enhance One-Sided Confidence Regions for a Multivariate Location Parameter

Michael Vock

Universität Bern Institut für mathematische Statistik und Versicherungslehre

MCP 2007, Vienna, July 10, 2007

Research supported by the Swiss National Science Foundation

Outline

Introduction

Direct Derivation of Confidence Regions for ϑ

Enhanced Confidence Regions for ϑ

One-Sided Confidence Regions

- $oldsymbol{X}_1,\ldots,oldsymbol{X}_n$ i. i. d. random vectors in \mathbb{R}^p
- $oldsymbol{X}_i \sim \mathrm{P}_{oldsymbol{artheta}}$, $oldsymbol{artheta} \in \Theta$ unknown
- $\mathbf{P}_{\boldsymbol{\vartheta}}$ (at least directionally) symmetric w.r.t. $\boldsymbol{\vartheta}$

Problem: Find a $1 - \alpha$ confidence region for ϑ that is

- as strict as possible in specific directions
- possibly unbounded in "irrelevant" directions
- (e.g. a cone or an orthant).

Connection with One-Sided Location Tests

Let φ_{α} be a non-randomized level α test for

 $H_0: \boldsymbol{\vartheta} \in \Theta_0(\boldsymbol{\gamma})$ vs. $H_1: \boldsymbol{\vartheta} \in \Theta \smallsetminus \Theta_0(\boldsymbol{\gamma}).$

(E.g. $\Theta_0(\boldsymbol{\gamma}) = \boldsymbol{\gamma} + (-\infty, 0]^p$)

Inversion of φ_{α}

$$\Rightarrow \mathcal{C}_{1-\alpha}(\boldsymbol{X}_1, \dots, \boldsymbol{X}_n) = \{ \boldsymbol{\gamma} : \varphi_{\alpha}((\boldsymbol{X}_1, \dots, \boldsymbol{X}_n), \boldsymbol{\gamma}) = 0 \}, \text{ and} \\ P_{\boldsymbol{\vartheta}}(\mathcal{C}_{1-\alpha}(\mathbf{X}) \ni \boldsymbol{\gamma}) \ge 1 - \alpha \quad \forall \ \boldsymbol{\vartheta} \in \Theta_0(\boldsymbol{\gamma}) \quad \forall \ \boldsymbol{\gamma} \in \Theta. \\ \mathcal{C}_{1-\alpha} \text{ is a } 1 - \alpha \text{ confidence region for the meta-parameter } \boldsymbol{\gamma}.$$

Outline

Introduction

Direct Derivation of Confidence Regions for ϑ

Enhanced Confidence Regions for ϑ

Direct Derivation of Confidence Regions for ϑ

Assume that $\gamma \in \Theta_0(\gamma), \ \forall \ \gamma \in \Theta.$ Then

$$P_{\boldsymbol{\vartheta}}(\mathcal{C}_{1-\alpha}(\mathbf{X}) \ni \boldsymbol{\vartheta}) \ge 1 - \alpha \quad \forall \; \boldsymbol{\vartheta} \in \Theta.$$

 $C_{1-\alpha}$ is also a $1-\alpha$ confidence region for the location parameter ϑ .

Direct Derivation of Confidence Regions for ϑ

Assume that $\gamma \in \Theta_0(\gamma), \ \forall \ \gamma \in \Theta.$ Then

$$P_{\boldsymbol{\vartheta}}(\mathcal{C}_{1-\alpha}(\mathbf{X}) \ni \boldsymbol{\vartheta}) \ge 1 - \alpha \quad \forall \; \boldsymbol{\vartheta} \in \Theta.$$

 $C_{1-\alpha}$ is also a $1-\alpha$ confidence region for the location parameter ϑ .

Problems:

- conservative
- unpleasant shape to be illustrated...

Min and Max Tests

Min Test

Reject $H_0: \exists j \in \{1, \ldots, p\} : \vartheta_j \leq \gamma_j$ in favor of $H_1: \vartheta > \gamma$ at the level α if and only if

$$\varphi_{j,\alpha}((X_{1j},\ldots,X_{nj}),\gamma_j)=1, \forall j\in 1,\ldots,p.$$

Bonferroni Max Test

Reject $H_0: \vartheta \leq \gamma$ in favor of $H_1: \exists j \in \{1, \ldots, p\}: \vartheta_j > \gamma_j$ at the level α if and only if

$$\exists j \in 1, \dots, p : \varphi_{j,\alpha/p}((X_{1j}, \dots, X_{nj}), \gamma_j) = 1.$$

Example

Two variables of the pulmonary function data by Randles (1989) (slightly modified from Merchant et al., 1975).

$$C_{1-\alpha}(\mathbf{X}) = \boldsymbol{c}_{1-\alpha}(\mathbf{X}) - \Theta_0(\mathbf{0})$$

P. F. Data, Wilcoxon Bonferroni Max Test

$$C_{1-\alpha}(\mathbf{X}) = c_{1-\alpha}(\mathbf{X}) - \Theta_0(\mathbf{0})$$

P. F. Data, Sign Test by Larocque/Labarre (2004)

 $\mathcal{C}_{1-lpha}(X) pprox m{c}_{1-lpha}(X) - \Theta_0(m{0})$ (outside a sufficiently large ball)

Back to the Drawbacks of the Direct Approach

If confidence regions for γ are directly used as confidence regions for $\vartheta,$ they are

- usually conservative and
- similar in shape to $-\Theta_0$, rather than to $\Theta_1 = \Theta \setminus \Theta_0$.

Outline

Introduction

Direct Derivation of Confidence Regions for ϑ

Enhanced Confidence Regions for ϑ

Enhanced Confidence Regions for ϑ (1)

Temptation:
$$\tilde{\mathcal{C}}_{1-\alpha}(X) = \bigcap_{\boldsymbol{\gamma} \notin \mathcal{C}_{1-\alpha}(X)} \Theta_1(\boldsymbol{\gamma})$$

Enhanced Confidence Regions for ϑ (1)

Temptation:
$$\tilde{\mathcal{C}}_{1-\alpha}(X) = \bigcap_{\boldsymbol{\gamma} \notin \mathcal{C}_{1-\alpha}(X)} \Theta_1(\boldsymbol{\gamma})$$

 \Rightarrow liberal – multiple testing problem!

Solution: Reduce the set of possible meta-parameters in advance.

Enhanced Confidence Regions for ϑ (2)

Let $C_{1-\alpha}: \mathcal{X} \to \mathcal{P}(\mathbb{R}^p)$ be a $1-\alpha$ confidence region for γ based on $(\Theta_0(\gamma))_{\gamma \in \mathbb{R}^p}$. Let $\Theta_0(\gamma) = \gamma + \Theta_0(\mathbf{0}), \forall \ \gamma \in \mathbb{R}^p$, closed, $\Theta_1(\gamma) = \mathbb{R}^p \setminus \Theta_0(\gamma)$. Assume that $\Theta_0(\gamma) \subset \Theta_0(\gamma + (\delta, \dots, \delta)^T), \forall \ \gamma \in \mathbb{R}^p, \delta > 0$. With $\gamma_i = (i, \dots, i)^T \in \mathbb{R}^p, \forall \ i \in I = [\ell, \infty)$, define $\tilde{C}_{1-\alpha}(X) := \bigcap_{i \in I: \gamma_{i'} \notin C_{1-\alpha}(X) \ \forall \ i' \leq i} \Theta_1(\gamma_i)$.

Then

$$P_{\boldsymbol{\vartheta}}\left(\tilde{\mathcal{C}}_{1-\alpha}(\mathbf{X})\ni\boldsymbol{\vartheta}\right)\geq 1-\alpha\quad\forall\;\boldsymbol{\vartheta}\in\mathbb{R}^{p}.$$

Idea of the Proof

- $(\Theta_0(\gamma_i))_{i \in I}$ is closed under (finite and infinite) intersections.
- Apply the closed testing principle (Marcus, Peritz, and Gabriel, 1976).
- Translate to confidence regions.

Enhanced Confidence Regions: Properties

- $\tilde{\mathcal{C}}_{1-\alpha}(X) = c_{1-\alpha}(X) + \Theta_1(\mathbf{0})$ (by definition)
- $\tilde{\mathcal{C}}_{1-\alpha}(X) \subset \mathcal{C}_{1-\alpha}(X)$ under suitable conditions $(\Theta_1(\mathbf{0}) \text{ convex cone, translation invariance, and a monotonicity property})$

Enhanced Confidence Regions: Properties

- $\tilde{\mathcal{C}}_{1-\alpha}(X) = c_{1-\alpha}(X) + \Theta_1(\mathbf{0})$ (by definition)
- $\tilde{C}_{1-\alpha}(X) \subset C_{1-\alpha}(X)$ under suitable conditions ($\Theta_1(\mathbf{0})$ convex cone, translation invariance, and a monotonicity property)

Disadvantage: Restricted set of possible confidence regions (search on the diagonal)

Summary

- A confidence region $C_{1-\alpha}(X)$ obtained by inversion of a test for a composite null hypothesis is for a meta-parameter.
- Even if $C_{1-\alpha}(X)$ may also be a confidence region for the parameter ϑ itself, it is not very useful.
- The proposed method based on the closed testing principle yields a confidence region $\tilde{\mathcal{C}}_{1-\alpha}(X)$ with a more useful shape.
- $\tilde{\mathcal{C}}_{1-\alpha}(X)$ is also less conservative than $\mathcal{C}_{1-\alpha}(X)$ under suitable conditions.

References

- Larocque, D., Labarre, M. (2004). A conditionally distribution-free multivariate sign test for one-sided alternatives. *Journal of the American Statistical Association*, **99**, 499–509.
- Marcus, R., Peritz, E., Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. *Biometrika*, **63**, 655–660.
- Merchant, J. A., Halprin, G. M., Hudson, A. R., Kilburn, K. H., McKenzie, W. N., Hurst, D. J., Bermazohn, P. (1975). Responses to cotton dust. Archives of Environmental Health, **30**, 222–229.
- Randles, R. H. (1989). A distribution-free multivariate sign test based on interdirections. *Journal of the American Statistical Association*, 84, 1045–1050.
- Vock, M. (2007). Enhanced one-sided confidence regions for a multivariate location parameter, submitted.