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Outline

I. Background. FWE. Closed testing. O’Brien. Common effect
direction. Concept of consonance.

II. Simple sum test is maximin. New method for testing the
intersection is consonant and maximin.

III. Application to the PROactive clinical trial. WLW method.
Permutation test alternative.
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Multi-experiment Trial

Simultaneously test s hypotheses H1, . . . ,Hs: common in clinical
trials to have s measures of efficacy or “endpoints” per patient.

Go beyond the usual P (Type I error) to the familywise error rate
(FWEP ) ≡ ProbP (at least 1 true Hi is rejected).

Require FWEP ≤ α ∀P,

where our model P = {Pθ, θ ∈ Ω} and Hi : P ∈ ωi ⊂ Ω.

Aim: allocate FWEP so as to maximize “power”.
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The Classics. Bonferroni: Given p-value p̂j for testing Hj , reject
any Hi if p̂i ≤ α/s. This controls FWEP .

Stepdown Methods: Holm. Order the p-values and reject
corresponding H(1), . . . ,H(j) from smallest to largest possible.
Sidak is another stepdown method.

A stepup method starts with the largest p-value: Hochberg, Rom.

While big improvements over Bonferroni, still can be conservative.

4



Stretching the FWE Budget

• Intersection Hypothesis. For a subset K ⊆ {1, . . . , s}, let
HK ≡

⋂
i∈K Hi =

⋂
i∈K ωi so HK is true iff θ ∈

⋂
i∈K ωi.

Closure Method. To simultaneously test H1, . . . ,Hs, Marcus,
Peritz and Gabriel (1976) reduce the problem to constructing single
tests that control the usual probability of Type I error.

Suppose an α-level test of HK exists for every subset K. Then, the
decision rule that rejects Hi if and only if HK is rejected for all
subsets K for which {i} ⊆ K strongly controls the FWE.
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Stretching the FWE Budget

So, in order for Hi to be deemed significant, every intersection
hypothesis which includes Hi must be deemed significant. For
s = 3, to reject H2, must reject H{1,2,3}, H{1,2}, H{2,3} and H2.

How to test the intersection?

A. The max. Incorporating the dependence structure of
p-values. Westfall and Young (1993), Resampling-Based Multiple
Testing: Examples and Methods for P-Value Adjustment.

Further work by van der Laan et al. (2004). Romano and Wolf
(2005) test any intersection hypothesis by bootstrapping the
distribution of the maximum test statistic or minimum p-value.
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B. The sum. When Common Effect Direction can be assumed,
O’Brien (1984) developed a test statistic for the intersection
hypothesis more powerful than Hotelling’s T 2 (in 2 dimensions).

• Common Effect Direction. Means {θ : θi ≤ −ε or ≥ ε , i = 1, 2} .

Sum vs. Max. Lehmacher et al. (1991) state that Bonferroni, and
tests based on the maximum test statistic, are useful in situations
where one difference stands out from the rest; O’Brien, and tests
based on the sum, succeed when all treatment effects are similar.
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Intersection TestIntersection Test

Power comparison in 2 dimensionsPower comparison in 2 dimensions

sum

max

max

0,0 θ2

θ1
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Consonance

A method is consonant if the rejection of an intersection hypothesis
implies the rejection of at least one subset hypothesis it contains.

• e.g. rejection of θ1 = θ2 = 0 entails rejection of θ1 = 0 or θ2 = 0.

Not all methods generated by the closure principle are consonant.

“... consonance is only a desirable property.”
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BLUE: Test (i) defined by circle of radius 2.448; RED:
Test (ii) defined by square with halflength 2.234; α = 0.05

Figure 1: The pt (1.83, 1.83) leads to rejection of H{1,2} using (i) but
not (ii), but applying closure, no rejections of individual Hi (1.96).
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Rejection region of improved Test (i).

Figure 2: ‘Union’ of circle (radius 2.421) and square (side 2x1.96)
removes dissonant points like (1.83, 1.83), which no longer rejects.
Note (2.43, 0) would reject H1. This test is consonant.
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Focus on 2 dimensions. Asymptotic version: observe (X1, X2)
bivariate normal with Xi ∼ N(θi, 1) and known correlation ρ.

Common effect direction. Assume (θ1, θ2) either in quadrants I, III.

Hi : θi = 0 versus H ′
i : θi 6= 0 . Want to apply closure.

Test for Hi based on UMPU test, which rejects if |Xi| > z1−α
2

.

Choice of intersection test? One possibility, determine the maximin
test over {min(|θ1|, |θ2|) ≥ ε} or over {|θ1 + θ2| ≥ ε}.

Proposition: In either region where minimum power is maximized
and for all ε > 0, the maximin test rejects H{1,2} : θ1 = θ2 = 0 if

|X1 + X2| > z1−α
2
(2 + 2ρ)1/2 . (1)

12



Notice that |X1 + X2| in (1) can be large without either |Xi| being
sufficiently large to reject its individual Hi (dissonance).

Theorem: Optimal consonant, maximin, level α test is given by

{(X1, X2) : |X1 + X2| > r(1− α), max(|Xi|) > z1−α
2
} , (2)

where the constant r(1− α) is determined so that this rejection
region has probability α under (θ1, θ2) = (0, 0).

Proofs: visit ssrn.com/abstract=938950 or see technical report.

The optimal rejection region of (2) resembles that of (1) but adds
the necessary restrictions to make the test consonant.
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Rejection regions for simple sum test and its consonant
improvement when ρ = 0

Figure 3: Simple sum test rejects outside dashed red band. Improved
test rejects outside solid blue band. The pt (1.6, 1.6) accepts both
Hi. The pt (2.3, 0.2) rejects H1 for improved test only.
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Motivating Case Study: PROactive

Randomized, double-blind clinical trial to investigate the effect of
oral glucose lowering drug pioglitazone on macrovascular outcomes.
n = 5238 patients with T2 diabetes and a history of heart disease.

Primary endpoint - time to first occurrence of: death, stroke,
non-fatal MI (incl. silent myocardial infarction), acute coronary
syndrome (ACS), leg amputation, various procedural interventions.

Secondary endpoint - time to 1st occurrence of the most serious and
objective components: death, stroke, non-fatal MI (excl. silent MI).

• Two interim analyses reduced nominal FWE available to 0.044
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PROactive Clinical Trial

Figure 4: The log-rank test (Mantel-Haenszel test) for the Primary
endpoint yields a p-value of 0.095.
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Secondary Endpoint

Figure 5: The log-rank test for the Secondary endpoint yields a
p-value of 0.027.
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Is the secondary endpoint significant? Dormandy et al. (2005) were
criticized for claiming it was, because a MCP was not used.

Could a MCP have been applied? How to combine the individual
log-rank tests into a test of the intersection and apply a closed test?

Try the simple sum and consonant sum tests! Must consider the
endpoints co-primary. Note from the definition: high correlation
expected and assumption of common effect direction justified.
Individual Hi already tested with the log-rank test.

WLW method. Use relation of log-rank test to PH model to
apply Wei et al. (1989) method of marginal distributions. Sum
studentized parameter estimates of the 2 endpoints (asymptotically
normal) and estimate ρ̂ = 0.74 from the “sandwich” estimator of
the covariance matrix; see Liang and Zeger (1986).
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Results. Consonant sum test yields adjusted p-value of 0.036 for
H{1,2} (vs. 0.038 for the simple sum).

Closed test: H{1,2} − p-value < 0.044 =⇒ reject.

H2 − log-rank test p-value 0.027 < 0.044 =⇒ reject.

Second endpoint declared significant.

Permutation test. Randomly permute treatment, placebo labels.
More robust. Useful with small samples. Yielded identical results.

Conclusion: New consonant sum test a more powerful tool under
common effect direction.

Had PROactive evaluated its endpoints as co-primary in a closed
test setting, both the simple sum test and the new consonant sum
test would have identified one endpoint as statistically significant.
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