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The Basic Setup

Observe data X = (X1, . . . , Xn) from P .

Test hypotheses H1, . . . ,Hs: Hj ≡ P ∈ ωj

Let I = I(P ) ⊂ {1, . . . , s} denote the indices of the set
of true hypotheses: j ∈ I if and only P ∈ ωj . The
familywise error rate (FWEP ) is the probability under
P that any Hj with j ∈ I is rejected.

Require FWEP ≤ α ∀P .

Suppose Hj is rejected for large values of Tn,j , or small
p-value p̂j .
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Starting point: Stepdown methods based on marginal
p-values. Given p-value p̂j for testing Hj , order them as

p̂(1) ≤ · · · ≤ p̂(s)

with corresponding H(1), . . . ,H(s).

Let α1 ≤ α2 ≤ · · · ≤ αs .

Method: Let j∗ be the largest j: p̂(1) ≤ α1, . . . , p̂(j) ≤ αj

and reject H(1), . . . ,H(j∗).

Bonferroni: αi = α/s controls the FWE.

Holm: αi = α/(s− i + 1)

While a big improvement over Bonferroni, still can be
conservative.
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Directions for Improving Holm

I. Incorporating or estimating the dependence
structure of p-values. This is the approach taken in
Westfall and Young (1993), Resampling-Based Multiple
Testing: Examples and Methods for P-Value
Adjustment. Also see Dudoit, Pollard and van der
Laan (2004) and Romano and Wolf (2005).

II. Relax control of the FWE. Given a multiple
testing decision rule, let F = # false rejections, R = #
rejections. Define the false discovery proportion (FDP)
as F/R (defined to be 0 if R = 0).
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(i) As a measure of error control, Benjamini &
Hochberg (1995) popularized the false discovery rate
(FDR) defined by

Require E(FDP) ≤ α .

(ii) Let k-FWE: the probability that F ≥ k. Require
P{F ≥ k} ≤ α .

(iii) Given a value γ, require P{FDP > γ} ≤ α.

eg. FDP control with α = 1/2 means

median(FDP) ≤ γ
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Given p-values for individual tests, stepdown methods
exist for controlling these at level α with no
assumptions about the dependence structure of the
p-values; see Benjamini and Yekutieli (2001) and
Romano and Shaikh (2006).

Here, we will combine I (incorporate dependence
structure) and II (weaken error measure) to achieve
greater power.
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Goal: Derive stepwise procedures that control k-FWE
and FDP which incorporate dependence structure
among test statistics or p-values. Begin with k-FWE.

Theorem 1 (Generalized Bonferroni) The method
that rejects Hi if p̂i ≤ kα/s controls the k-FWE.

Theorem 2 (Generalized Holm) Let αi = kα/s if
i ≤ k and

αi =
kα

s + k − i
if i > k . (1)

The stepdown procedure with above αi controls the
k-FWE.

Above results due to Hommel and Hoffman (1987) and
elaborated on in Lehmann and Romano (2005).
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The above results do not incorporate dependence
structure. But we now argue it is vital to do so,
especially for generalized error rates.

Under independence, one can improve the constant
kα/s dramatically. Let

Hk,s(u) =
s∑

j=k

(
s

j

)
uj(1− u)s−j . (2)

Consider the (generalized Sidák) procedure that rejects
any Hi whose corresponding p-value p̂i is ≤ H−1

k,s(α).

This controls the k-FWE (Guo and Romano, 2007).
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Further stepdown improvement: Let

α1 = · · · = αk = H−1
k,s(α)

and, for j > 0,

αk+j = H−1
k,s−j(α) .

This controls the k-FWE.
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How dramatic are these improvements? For k = 1, the
ratio of critical values satisfies:

lim
s→∞

1− (1− α)1/s

α/s
→ − log(1− α)

α
,

which = 1.026 when α = 0.05.

In general, if you use the cutoff kα/s, then under
independence,

k − FWE = O(αk) as α → 0, s →∞ .
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Table 1: Single step constants for k-FWE control with
s = 100 and α = 0.05

k A = kα/s B = Ck,s(α) B/A

1 0.0005 0.00051 1.026

2 0.0010 0.00353 3.530

3 0.0015 0.00806 5.376

5 0.0025 0.01913 7.653

7 0.0035 0.03140 8.972

10 0.0050 0.05062 10.124
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A general construction of stepdown tests under weak
assumptions Related work by Korn, Troendle, McShane
and Simin (2004), van der Laan, Dudoit and Pollard
(2004).

Let P be the true probability, P ∈ Ω.

Hj specified by ωj ⊂ Ω.

j ∈ I(P ) if and only P ∈ ωj .

Let
Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rs

denote the observed ordered test statistics, and H(1),
H(2), . . . ,H(s) the corresponding hypotheses.
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Motivating Example: Correlations

X1, . . . , Xn are i.i.d. random vectors in RI d, with
Xi = (Xi,1, . . . , Xi,d).

Assume E|Xi,j |2 < ∞ and V ar(Xi,j) > 0, so that the
correlation between X1,i and X1,j , namely ρi,j is
well-defined.

Hi,j : ρi,j = 0, (s =
(
d
2

)
)

Let Tn,i,j = sample correlation between variables i and
j. (Note we are indexing hypotheses and test statistics
by 2 indices i and j.)
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By Aitken (1969, 71), if d = 3, H1,2 and H1,3 are true
but H2,3 is false, the limiting distribution of
n1/2(Tn,1,2, Tn,1,3) is biv. normal: means 0, variances 1,
and correlation ρ2,3. Subset pivotality fails, as noted by
WY (1993).
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A stepdown procedure begins with the most significant
test statistic. First, test all null hypotheses H1, . . . ,Hs.
H(1) is rejected if Tn,r1 is large. If it is not large, accept
all hypotheses. Once a hypothesis is rejected, remove it
and test the remaining hypotheses by rejecting for large
values of the maximum of the remaining test statistics,
and so on.

15



Problem: how to construct the critical values at each
step so that the k-FWE is controlled?

Idea: Reduce the multiple testing problem of controlling
the k-FWE in a stepdown procedure to that of
constructing single tests which control the probability of
k or more false rejections.
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Notation: If {yi, i ∈ K} is a collection of numbers
indexed by a finite set K having |K| elements. Then,
for k ≤ |K|, k- maxi∈K(yi) is used to denote the kth
largest value of the yi with i ∈ K.

Start with single step method. Suppose Hi ≡ θi(P ) = 0.
let K0 = {1, . . . , s}. For any K ⊂ K0, let cn,K(α, k, P )
denote an α-quantile of the distribution of
k- maxj∈K |θ̂n,j − θj(P )| under P . (Note: can studentize
here.)
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Then, {θj ∈ K0 : |θ̂n,j − θj | ≤ cn,K0(1− α, k, P )}

is a confidence region for (θj : j ∈ K0) which contains
all of the θj , except possibly k − 1 of them.

By duality, rejecting any Hj for which |θ̂n,j | exceeds
cn,K0(1− α, k, P ) controls the k-FWE. Since P is
unknown, a bootstrap method replaces P by Q̂n and
uses the critical value cn,K(1− α, k, Q̂n), providing an
asymptotic solution (under weak conditions).

In the following algorithm designed for control of the
k-FWE, suppose ĉn,K(1− α, k) are used to test Hi with
i ∈ K.
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Algorithm 1 Generic Stepdown Method For
Control of the k-FWE Let A1 = {1, . . . , s}.

1. If maxi∈A1 Tn,i ≤ ĉn,A1(1− α, k), then accept all
hypotheses and stop; otherwise, reject any Hi for
which Tn,i ≥ ĉn,A1(1− α) and continue.

2. Let R2 be the indices i of hypothesis Hi previously
rejected, and let A2 be the remaining hypotheses. If
R2 < k, stop. Otherwise, let

d̂n,A2(1− α, k) = max{cn,K(1− α, k) :

K = A2

⋃
I, I ⊂ R2, |I| = k − 1} .

Then, reject any Tn,i with i ∈ A2 satisfying
Tn,i > d̂n,A2(1− α, k). If no further rejections, stop.

19



...

j. Let Rj be the indices i of hypotheses previously
rejected, and let Aj be the remaining hypotheses.
Let

d̂n,Aj (1− α, k) = max{cn,K(1− α, k) :

K = Aj

⋃
I, I ⊂ Rj , |I| = k − 1} .

Then, reject any Tn,i with i ∈ Aj satisfying
Tn,i > d̂n,Aj

(1− α, k). If no further rejections, stop.

...

And so on.
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Theorem 3 Using above algorithm with critical values
ĉn,K(1− α, k) satisfying whenever I(P ) ⊂ K

ĉn,K(1− α, k) ≥ ĉn,I(P )(1− α, k) ,

k-FWEP ≤ P{k-max(Tn,j : j ∈ I(P )) >

ĉn,I(P )(1− α, k)}

So, if last expression ≤ α, then k-FWEP ≤ α.

• Resampling methods can be used to always satisfy
monotonicity requirement, and the last requirement
typically holds at least asymptotically. Bootstrap
consistency theorems ensue.
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For those unfamiliar with the bootstrap,
cn,K(1− α, Q̂n) approximated by Monte Carlo:

For b = 1, . . . B, let X∗(b) be a sample drawn from Q̂n.
Based on X∗(b), compute estimates θ̂∗n,i(b). Let

mb = max
i∈K

τn|θ̂∗n,i(b)− θ̂n,i|

A 1− α quantile of the empirical distribution of the B

values m1, . . . ,mB approximates cn,K(1− α, Q̂n).

• Same set of resamples for any K.
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If k = 1, at step j, no need to consider previously
rejected hypotheses.

For k > 1, at step j, having made Rj rejections, one has
to evaluate

(
Rj

k−1

)
quantiles over which one maximizes.

Asymptotically, one need only consider the subset of
k − 1 least significant hypotheses rejected.

Operative Method: Fix Nmax = 50, say, and let M be
the largest integer for which

(
M

k−1

)
≤ Nmax. Consider at

most the M most “recently” rejected hypotheses and
maximize over subsets corresponding to those M

hypotheses together with those not already rejected.
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Eg 1 [Testing Correlations] Suppose X1, . . . , Xn are
i.i.d. random vectors in RI d, so that
Xi = (Xi,1, . . . , Xi,d). Assume E|Xi,j |2 < ∞ and
V ar(Xi,j) > 0.

Hi,j specifies ρi,j = 0. Let Tn,i,j = sample correlation
between variables i and j.

The conditions for the bootstrap hold because
correlations are smooth functions of means.
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Eg 2 [s-variate 2-sample Problem] Y1, · · · , YnY
i.i.d.

PY ,

Z1, · · · , ZnZ
i.i.d. PZ .

PY and PZ are distributions on Rs, with jth
components denoted PY,j and PZ,j . Assume Hj implies
PY,j = PZ,j . Permutation tests apply and yield exact
control.
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Generalizes to:

• more general hypotheses

• other resampling schemes:

(i) permutations (can lead to finite sample control)

(ii) moving blocks bootstrap (for dependent data)

(iii) subsampling (under weakest conditions)

• Also applies if s = ∞ (applications to underidentified
econometric models).
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Simulations support

• good control of the k-FWE in finite samples

• increase in “power” over generalized Holm or methods
based on marginal pvalues. For example, if k = 1, for s

in the range 10–40, the stepdown method rejects
between 20% and 50% more false hypotheses than
Holm. Not surprisingly, increasing k rejects many more
hypotheses.
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Balance and Error Allocation May be desirable to have
P{reject Hi} independent of i for all true i.

This can be achieved by using studentized statistics, or
p-values.

Of course, one can use the bootstrap to convert each
Tn,i into a p-value p̂n,i and then apply the basic
algorithm to T ′n,i = −p̂n,i. This would involve a double
bootstrap. Actually, the bootstrap can be used to
achieve balance automatically, by a generalization of the
basic algorithm, and by doing only a single bootstrap.
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Control of the FDP

Recall F = # false rejections, R = # rejections. Define
the false discovery proportion (FDP) as F/R (defined as
0 if R = 0). Given a value γ, require

P{FDP > γ} ≤ α

Basic idea: At step i, having rejected i− 1 hypotheses,
we want to guarantee F/i ≤ γ, i.e. F ≤ bγic, where bxc
is the greatest integer ≤ x. So, if k = bγic+ 1, then
F ≥ k should have probability no greater than α; that
is, we must control the number of false rejections to be
≤ k.
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Therefore, we use a stepdown procedure such that at
step i, we apply a k-FWE controlling procedure, where

k = k(i, γ) = bγic+ 1 .

eg. Apply generalized Bonferroni/Holm constants.
Leads to a stepdown method based on marginal
p-values with critical values αi = (bγic+1)α

s+bγic+1−i .

Theorem 4 Under weak dependence assumptions, the
stepdown method with these αi controls the FDP.

e.g. the family of distributions is positively dependent
and is characterized by the multivariate positive of
order two condition. (Sarkar, 1998)

30



By same reasoning, apply the bootstrap method to
control the k-FWE at step i, where
k = k(i, γ) = bγic+ 1 .

Simulation results and applications presented in
Romano and Wolf (Annals 07) and Romano, Shaikh
and Wolf (Econometric Theory 07).

Conclusion: Asymptotic Theory and Simulations
support the value of methods which account for
dependence based on weaker measures of error control.

For FDR control, go to Wolf’s talk.

Caveats: Asymptotics, Increase in number of true
rejections.
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