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1. Introduction

Model Assumption: One-way ANOVA

A set of increasing &k dose levels of a drug and a

control
Y,; ~ N(u;,0°) independently, where i = 1,.... k,
g=1...., ;.

Minimum Effective Dose
MED = mindi: p; > p1 + 90}

where 0 is a clinically significant difference.



Error Rate

e For the MED problem, an error is made if the
inferred MED, and any of the doses higher than
the inferred MED), is in fact not efficacious. That
is, the probability of declaring an ineffective dose
to be effective.

e Previous formulations of the MED problem, which
have cast it as one of testing a family of null
hypotheses of equalities against various alterna-

tives, fail to control the aforementioned error
rate (Hsu and Berger (1999)).



Prior Knowledge:

e Treatment effect of a drug usually increases with
the increase of dose levels.

e Monotone Dose-Response (Simple Ordering):
1< S g

Hsu and Berger (1999)’s DR method does not
make use of the prior knowledge.

Question: How to take the prior knowledge into
account to follow the DR method?



Theorem 1 Denote the lower confidence bound for p; —
p by Li(Y) (2 < i < k). Assume that P{p,;5p — 11 >

L ‘o l, N : . . ) . Ts-' N - ] y o . ,
monotonicity assumption 1y < ... < jy, the probability of
inferring any ineffective dose as effective is < av.

Marcus and Peritz (1976) discussed the construc-
tion of simultaneous lower confidence bounds under
certain restricted normal model when the variances
are known. Their process is very lengthy.



2 A Multiple Contrast Test Statistic T; for Testing

Dose-Response.

2.1 The Likelihood Ratio Test

Hop i pip = p2 = ... = py versus Hyp : g < iy under the
monotonicity assumption ;. ={p :m < ... < pi}

k PR D g ke e .2 g 2
Sor =X ni(p; — o) /Y na(Ys — ) /v + S},
i=1 i=1 '

The null distribution of Sy under Hy, 1s given by

| N R ‘ sSIN—=3), .,
P(Spyy>s)=Y P, kiw)P{F,_1n_; > —jl} (1)

j v(j—1)



2.2 The Multiple Contrast Test Statistic 7;

TN,
T;. = max Z G/S(2 nict)™
ceCy ;=1 i=1 '
where
III.
Ck—{C:((l ,,,,, (;L)Z.ZHJ!,:“ c; < _(,:r}

o T:=x ni(uf —p)?/S=

e The statistic Tf 1s asymptotically equivalent tc

.15101 .

e The null distribution of 7; is given by

ke ?L_Q
P[j['T;b- > 'f-] = Z P(f ko 'H-)p[ﬂr_lll, > / l]
(=2 —




3 Lower Confidence Bound for ;i —

Let 7, ,, be the critical value of 7;, then

k _
Ppd Imax > nici(Y; — i)/ S (Z n;c: ) <tryal
ICk:—l 1=1
& N1/2 \
= Py 11111\2 nic;Y:/S(X nic)* < trpal
eCy =1 =1

It follows that

Je k
PH{ Znéci;:@ > Zram a‘kva‘?lan )12 for all c Ck} =1—na.
i=1 i=1

When the variance 0% is known, Marcus and Peritz
(1976, Biometrika) derived the above expression.



3.1 The Lower Confidence Bound for u; — iy

Denote

?k Y : 2 12
(Y nicipi) = X nic;Y; — tryaS| Z niC;
' =1 i=1

Let K = {c :c € C, ?_ln cifti < pp — pp, for all p €
(2}
The largest lower confidence bound for p; — py is

given by

Ly — pq) = max(( Z N;Cifl; ).

celp =1

Theorem 2 When p € (g, we have that T} > 1;, ., of
and only tf L(p, — py) > 0.
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Theorem 3 Suppose that T} > t;,,. The vector c®
Kir 1s an optimized solution if and only if there
exist positive integers p and q, 1 <p < qg <k, such

that 1, < p < ,u-;,SE . < Sgtwa and ¢f < - <
Ca‘iif_"p_‘_l:"':{!gl—o-{{‘g{---{CC" wh,ere

= N_l—l—b Lt — Yip), i =1,..., p, and ¢ —_V
b_l(y:—l’q;ﬁ] i=q,..., k., with

*

1113-"[{ Nplip—Y1p), "*rqrcﬂ_’qk—ﬂq]l} < b < min {lepﬂj(F;Jrl—fl.jpﬂjJ.~a“*r(q-1)rc(1_’(q-1)1-—FE_M}

(2)

bg — {tiy,a‘ qlp 1‘1"{/{‘ 1p + \I \’l

and Ngy = 52 ni, Yoo =50 niptl /Nap, S% =58 ni(pl —
V)2, When g =p+ 1, the upper bound for b in (2)

is replaced by (Y —Yy,)/ (N + ;"‘e'{}j;l).
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3.2 Iterative Algorithm

-

(0) Set i = 0, pp = max{l < j < k : p; < ji} and
go=min{2 < j <k > fL}.

(i) Let f"fH—l — 111&1}1{ -\,.Tlp (-!”* _}Trlmj_ i\"rth;,-(}_;ﬁ' 1“; )} T, Ay =
].ag 1
[ 1}] —i_ Sgk —i_ ( \' + \'t}-.f ) 3—|—]_] ,-ff'b' If f‘f{.b’.ﬂ"!:_H_ e if.'.b’.t'k"'.-
the Dptlmlzatmn solution is c” with p = p;, and
q = ¢;- Otherwise, go to (ii).

(ii) If \11,)( }1;; ) > \'qk(}:}#’r — J,H.:;)‘_ then set p; ; =
max{j : l < j < j.Jf.J,H.j < J.H.;} and ¢, = ¢;. Oth-
erwise, Set pig1 = p; and ¢ = min{j 1 ¢ < j <

ko > py f. Set i =i+ 1, go to step (i).

':i’ P
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4 The Stepwise Confidence Interval Procedure

Denote L{p;—p1) = maxeec, { Ejle '”-Jffj#j_t:}cr,!f*gﬁ,.-"lzir'=1 nj-cf }
subject to E;:g njc; < 1,1 =2,---,i, where C; = {c =
(€1,...,¢;) " Z;;:l njc; =0, 1 < ... <g},

Step 1: If L(pp — p1) = 0, then claim pp > g1+ 6 and
go to Step 2; else claim that there 1s no non-zero
dose level which is significantly better than the
control and ;. — 3 > L — p1) and stop.

Step 2: If L{pp_y — pq) = 6, then claim pp_ > pq + 96
and go to Step 3: else claim MED =k and j;,_; —

py > Lipgp_1 — p1), then stop.

13



Step k-1: If L(ps—p1) = 6. then claim ps > py+90 and
go to Step k; else claim MED = 3 and g — g >
L(po — p1) (when Y5 > Y7, this lower bound is the

same as Yy — Y] — tmyS\,f'lj“.rll + 1/ns, where t,, is
the t critical value), then stop.

Step k: Claim every dose level is significantly bet-
ter than the control, i.e., MED =2 and stop.

14



5 Two Examples

Example 1: Wohr, Borta, and Schwarting (2005).
Table 1. Immobility/min during the context phase
(1-3 min) of the retest day.

Dosage Sample Mean SEM
size  response response

0.0mA 7 8.89 3.96
0.2mA 7 5.36 1.87
0.5mA 7 32.01 6.29
0.8mA 7 42.75 4.93
1.1mA 5) 48.06 3.55
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Table 2. Step-down 95% Lower Confidence
Bounds for p; — p1 in Example 1.

i — 1 DUNNETT DR MC
ws— w1 23.82  27.66 27.67
w— i 2055  23.35 23.74
us— i 10.80  12.61 14.00

For illustration,
e If 6 = 10.0, MED = 3 by these three methods.

e If 6 =11.0, MED =3 by the DR method and the
MC method; MED =4 by the Dunnett method.

e If 6 = 13.0, MED = 3 only by the MC method:
MED = 4 by the Dunnett method and the DR
method.
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Example 2. Williams (1971) gave an example where
6 dose levels are compared with a zero dose control
under the monotonicity assumption.

Williams (1971): MED =5 for § = 0.

Table 3. Step-down 95% Lower Confidence Bounds for

1; — i in Example 2.

1, — 11 DUNNETT DR MC

L7 — 0.22 0.39 0.84
e 0.26 0.59 0.78
o -0.20 0.09 0.28

For illustration,

e If =02, MED =6 by the DR method and the
Dunnett method; MED =5 by the MC method.
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6 Simulation Studies

We considered o = 0.05. &k = 6 with 10000 repetitions
to compare multiple contrast method (MC) with
methods based on linear contrasts (denoted by LC),
Helmert contrasts (HC), Reverse Helmert contrasts

(RH), Williams’ (1971) procedure (W) and the DR
method (DR).

e Helmert contrasts (HC)and Reverse Helmert con-
trasts (RH) procedures should not be used in
the MED problems in general.

e Monotone Case: All procedures control the er-
ror rate (FWER) well. The MC procedure is
best in 16/24 cases and worst in only 3/24 cases
regarding the probability of identifying the true
MED and best in 15/24 cases and worst in 3/24
regarding the probability of identifying at least
one effective doses among LC, DR, W, and MC. 18



e Nonmonotone Case: If the monotone assump-
tion is mildly violated, the MC procedure may
be used with caution (may or may not control
the error rate). The DR method is the only
method that always controls the error rate.

The error rate (denoted as ERROR in Table 4)
is the same as Hsu and Berger (1999) but is
different from Tamhane et al. (1996) and Dun-
nett and Tamhane (1998). To illustrate, for p =
(0,1.2,3.7.1) and 0 = 1.5, a method commits an
error if it infers any dose i (2 < i < 6) to be the
MED but Tamhane et al. (1996) and Dunnett
and Tamhane (1998) define the FWER as if a
method infers doses 2 and 6 to be effective.
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Table 4. Estimated FWER/ERROR and Probability of Identifyving True MED

Under Nonmonotone Configurations

Configuration 4 MED HC RH LC DR W MC
0,1,2.3,4,3) 2.5 1 0000 0090 .0140 0176 .0353 .0203
FWER .0000 005G .0020 .0042 .0083 .0071
2.0 4 0000 0292 0445 03953 L0739 0551
FWER .0000 .0162 .0143 .0157 .0244 .0173
1.5 3 L0001 .0313 .0393 0318 0478 .0382
FWER .0000 .0139 .0045 .0057 .0078 .007S
1 3 L0005 L0646 0916 0666 .0937 .OTST
FWER .0000 0380 .0158 .0185 .0265 .0268
(0,0,0,0,5,4) 2.5 5 0879 L0021 .1697 2153 .3183 4641
FWER .0000 0000 .0000 .0001 0000 0000
2.0 5 L1993 L0089 3245 3435 4755 .GGSHT
FWER .0001 .0002 .0001 .0006 .0002 0000
1.5 5 L3619 0263 .5189 4890 6278 .5240
FWER .0005 .0013 .0010 .0020 .0024 .0010
1.0 5 5528 0705 .T034 6303 .7564 .9161
FWER .0030 .0045 .0045 .0079 0069 0057
(0,1,2,3,3.1.5) 2.5 ERROR .0000 .0199 .0047 .0086 .0209 .0119
2.0 ERROR .0002 0570 .0182 .0203 .0544 .0394
1.5 ERROR .0005 .1328 0628 0464 .1192 1026
1.0 3 L0000 L0616 0355 0211 .0661 .0588
FWER .0000 0372 .0067 .0101 .0240 .0233
(0,0,0,0,5,2) 2.5 ERROR .0011 .0035 .08S0 .0203 .1093 .1755
2.0 ERROR .0049 0123 .2061 .0464 .2050 .3421
1.5 5 0158 .0237  .3303  .0909 3390 .5605
FWER .0001 .0013 .0010 .0014 .0023 .0010
1.0 5 0499 0657 L5389 1601 4944 .T541
FWER .0003 .0045 .0043 .0046 .0069 0056

(0,1,2,3,7,1) 2.5 ERROR .0000 .0809 .07T08 .0034 .2117 .177
2.0 ERROR .0000 1756 .1722 .0086 .3530 .3272
1.5 ERROR .0000 .3170 .3401 .0203 .5171 .5205
1.0 ERROR .0001 .4961 .5563 .0464 .6776 .7205
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Conclusions

When the dose-response 1s monotone, the MC
method i1s superior to the DR method. If the
monotone assumption is not satisfied, one should
use the DR method if the error rate control is
of primary concern.

Utilizing the Kuhn-Tucker equivalence theorem
is the key to the optimization problem and the
proposed algorithm, which improves the method
of Marcus and Peritz (1976) significantly.

THANKS!
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