Sequential genome-wide association studies for pharmacovigilance

Patrick Kelly

5th International Conference on Multiple Comparison Procedures

10 July 2007

Medical and Pharmaceutical Statistics Research Unit The University of Reading, UK

In collaboration with...

John Whitehead Yinghui (Echo) Zhou MPS Research Unit, University of Reading

Nigel Stallard Warwick Medical School, University of Warwick

Clive Bowman Research Statistics Unit, GSK

Funded by GSK

Outline

- 1. Pharmacovigilance and genetics
- 2. Fixed sample size test
- 3. Sequential testing
- 4. An example
- 5. Summary & issues

Adverse events (AEs) may prevent regulatory approval

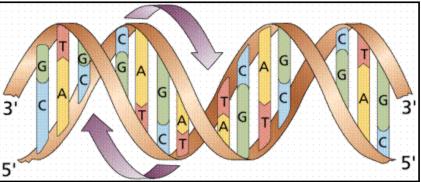
If AEs are limited to some subgroup drug can be targeted adverse event rate reduced drug may be safely used

Can we identify whether patients with AEs differ from those that do not have AEs?

Present

Patient medical history

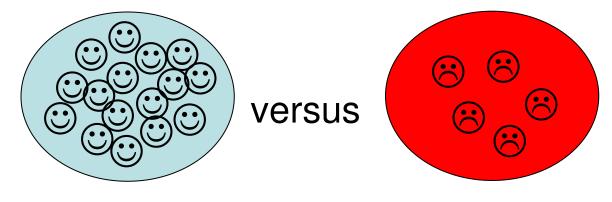
Future


Large scale genotyping becoming available e.g. > 500,000 SNP markers across genome

SNP (single nucleotide polymorphism)

A single base in the DNA sequence that can be observed to be different between individuals in the population

e.g. AACGTATGGACCGA AACGTATCGACCGA



Since chromosomes occur in pairs we have three genotypes

Case = patient with AE \bigotimes **Control** = patient without AE \bigotimes

Are cases genetically different from controls?

Conduct a test

CasesRare③Conduct fixed sample size test ×Drug withdrawn due to safety concerns

Aim Conduct a test as each new case occurs i.e. a sequential approach

Controls Patients in same trial may become cases ★ Want a large number

 \Rightarrow Select in advance, i.e. fixed in number

Fixed sample test - one SNP

3 genotypes – AA, AG, GG
$$k = 0, 1, 2$$

Are the genotype probabilities for cases the same as the controls?

$$\mathsf{H}_{0}: p_{\bigotimes 0} = p_{\bigotimes 0}, p_{\bigotimes 1} = p_{\bigotimes 1}, p_{\bigotimes 2} = p_{\bigotimes 2}$$

 $p_{\bigotimes 0}$, $p_{\bigotimes 1}$, $p_{\bigotimes 2}$ genotype probabilities for controls $p_{\bigotimes 0}$, $p_{\bigotimes 1}$, $p_{\bigotimes 2}$ genotype probabilities for cases

Fixed sample test - one SNP

Can test H_0 using a likelihood ratio test statistic, Λ

$$\Lambda = \frac{k}{k} = 0 \left(\frac{k}{k} + \frac{k}{k} \right)^{2} \left(\frac{k}{k} +$$

Controls $n_{\odot 0}$, $n_{\odot 1}$, $n_{\odot 2}$ Cases $n_{\otimes 0}$, $n_{\otimes 1}$, $n_{\otimes 2}$ Under H₀, -2 log $\Lambda \sim \chi^2_2$ $n_{\odot 0} = n_{\odot 0} + n_{\odot 1} + n_{\odot 2}$

Fixed sample test – many SNPs

Suppose there are *L* SNPs

Are the genotype probabilities for cases the same as the controls for **all** *L* **SNPs**?

$$H_{0}: p_{\otimes 01} = p_{\odot 01}, p_{\otimes 11} = p_{\odot 11}, p_{\otimes 21} = p_{\odot 21}; (SNP 1)$$

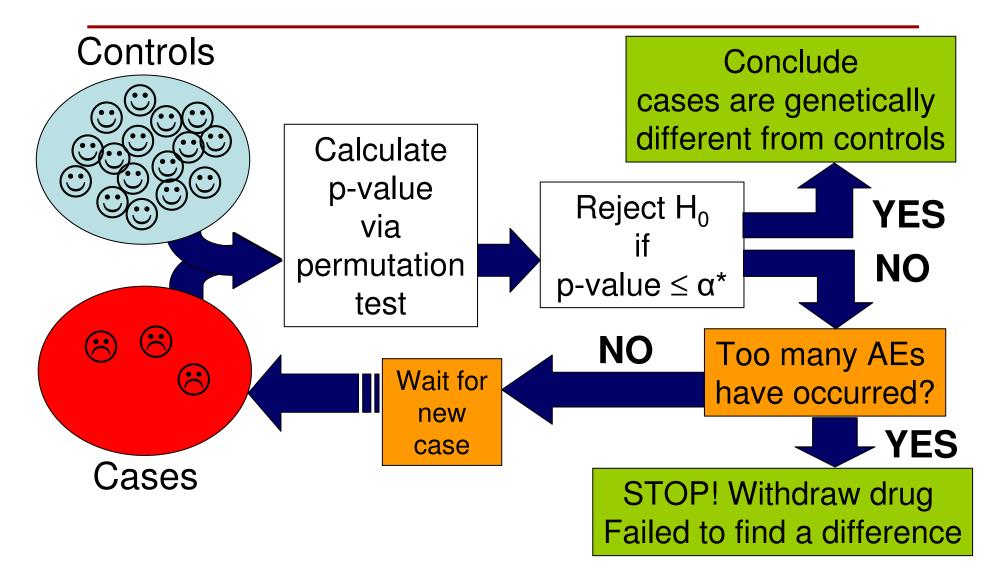
$$p_{\otimes 02} = p_{\odot 02}, p_{\otimes 12} = p_{\odot 12}, p_{\otimes 22} = p_{\odot 22}; (SNP 2)$$

 $p_{\otimes 0L} = p_{\odot 0L}, p_{\otimes 1L} = p_{\odot 1L}, p_{\otimes 2L} = p_{\odot 2L} \quad (SNP L)$

Fixed sample test – many SNPs

Likelihood ratio test statistic, Λ , becomes

 $n_{\bigoplus 0j}, n_{\bigoplus 1j}, n_{\bigoplus 2j}$ for controls at SNP *j* $n_{\bigotimes 0j}, n_{\bigotimes 1j}, n_{\bigotimes 2j}$ for cases at SNP *j*


Fixed sample test – many SNPs

If asymptotics hold and SNPs are independent then under H_0, -2 log $\Lambda \sim \chi^2_{\ 2L}$

However!

Some genotypes are rare \Rightarrow asymptotics poor SNPs are not independent (linkage disequilibrium)

Overcome problem by using a **permutation test** to obtain p-value Correlation structure of genome is preserved

We plan up to M tests

Need to account for the multiple testing

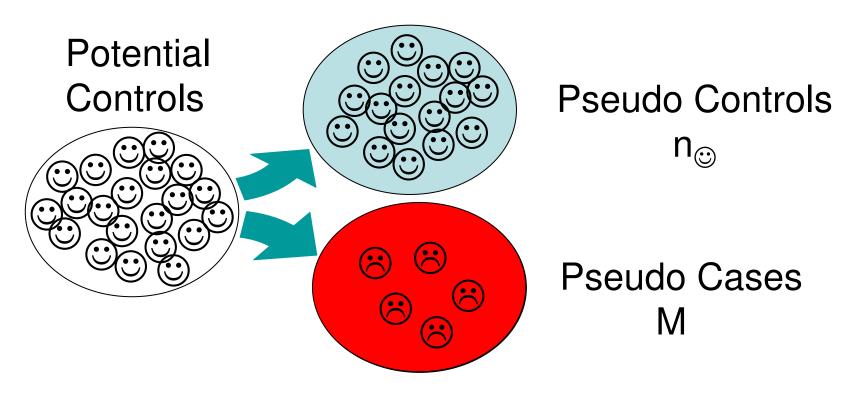
Otherwise type I error rate, α , will be inflated

How can we control the type I error rate?

Adjust the nominal significance level α^{\star} accordingly

Can't use standard sequential methods

Standard multiple testing methods


Sidak
$$\alpha^* = 1 - (1 - \alpha)^{1/M}$$

e.g. M = 20,
$$\alpha = 0.05 \Rightarrow \alpha^* \approx 0.0026$$

Assumes tests are independent But tests are correlated! Analysis will be conservative

Sampling-based approach

Randomly select

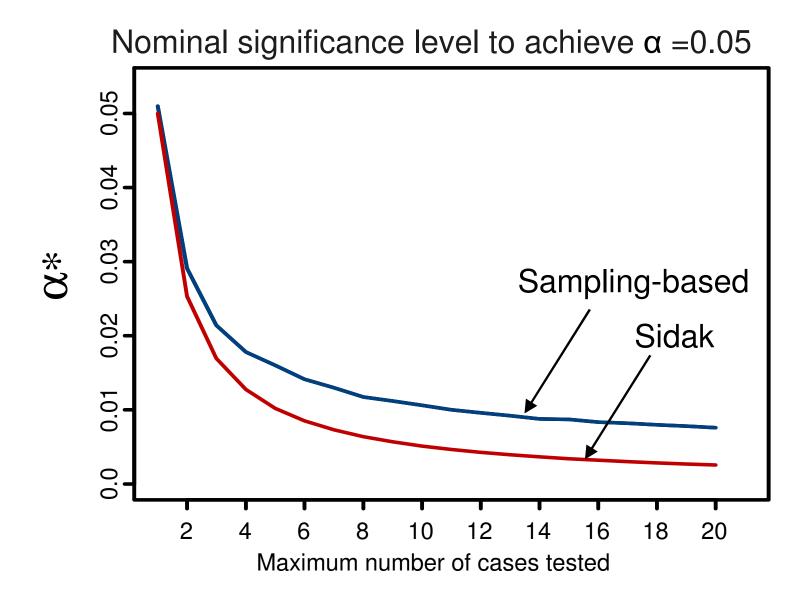
Sampling-based approach

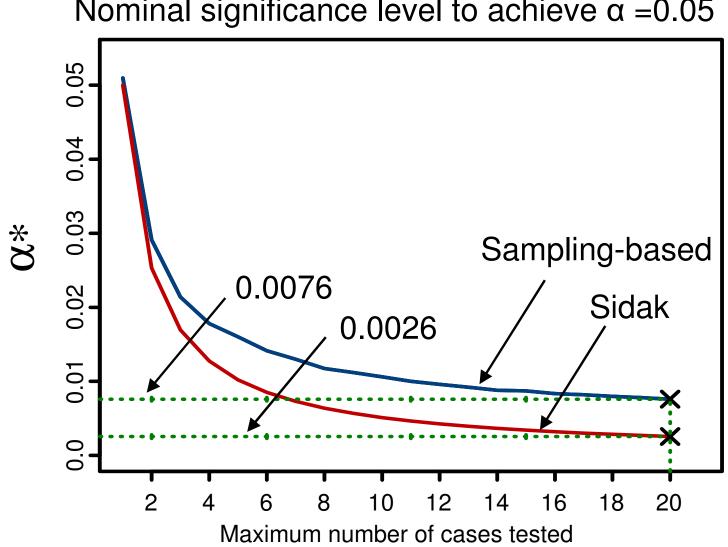
With pseudo data set conduct sequential procedure using significance level α* Reject H₀?

Repeat many times (e.g 10,000) to estimate α

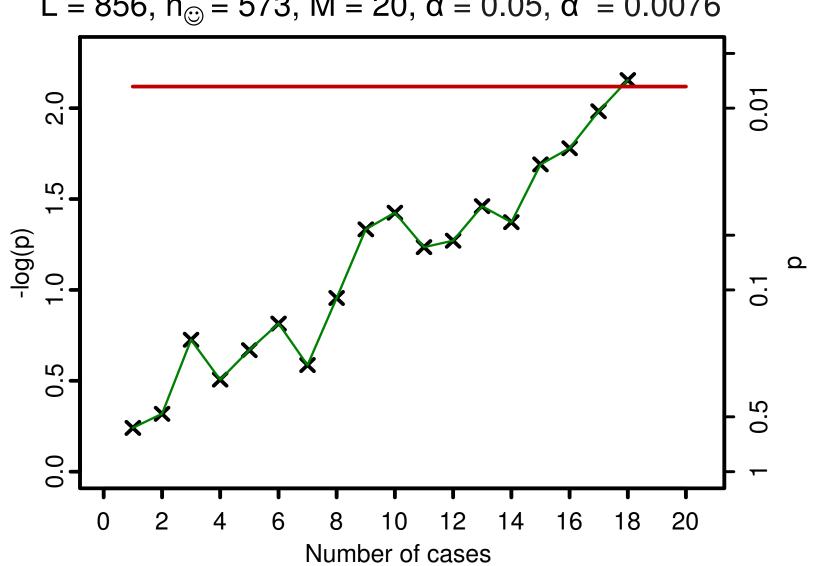
Find α^* which gives required α

Example


Abacavir : anti-viral treatment for HIV AE: hypersensitivity (5-8% of patients)


523 patients with AE (pool of cases)

593 patients without AE (pool of controls)


Retrospective application

Nominal significance level to achieve $\alpha = 0.05$

L = 856, n_{\odot} = 573, M = 20, α = 0.05, α^* = 0.0076

23

Summary

Permutations for fixed sample test

allows for correlation between SNP markers obtain a valid global p-value for genome

Sampling-based sequential testing

adjust nominal significance level to account for repeated testing

allows for correlation between successive tests simple and easy

Summary

Requirements

must specify the maximum number of tests planned

must have group of controls in advance must have sufficient computing facilities very computer intensive!

Issues

How do you select the controls?

Can we develop a less computer intensive method?

If we reject H₀, how do we identify those patients who should be excluded from receiving the drug?

References

Kelly PJ, Stallard N, Zhou Y, Whitehead J, Bowman C.

Sequential genome-wide association studies for monitoring adverse events in the clinical evaluation of new drugs. *Statistics in Medicine* 2006; 25: 3081-3092

Kelly PJ, Stallard N, Whittaker JC.

Statistical design and analysis of pharmacogenetics

trials. Statistics in Medicine, 2005; 24: 1495-1508