Adaptive Model-Based Designs in Clinical Drug Development

Vlad Dragalin Global Biostatistics and Programming Wyeth Research

5th International Conference on Multiple Comparison Procedures MCP 2007, Vienna, Austria | July 8-11, 2007

Outline

- Definition and general structure of adaptive designs
- Landscape of adaptive designs in drug development
- Achieving the goals
- Three case studies to exemplify capabilities/limitations
- Future prospects could this be the new product development tool?

Definition

Adaptive Design

- uses accumulating data to decide on how to modify aspects of the study
- without undermining the validity and integrity of the trial

Validity means

- providing correct statistical inference (such as adjusted pvalues, unbiased estimates and adjusted confidence intervals, etc)
- assuring consistency between different stages of the study
- minimizing operational bias

Integrity means

- providing convincing results to a broader scientific community
- preplanning, as much as possible, based on intended adaptations
- maintaining confidentiality of data

General Structure

- An adaptive design requires the trial to be conducted in several stages with access to the accumulated data
- An adaptive design may have one or more rules:
 - Allocation Rule: how subjects will be allocated to available arms
 - **Sampling Rule**: how many subjects will be sampled at next stage
 - **Stopping Rule**: when to stop the trial (for efficacy, harm, futility)
 - Decision Rule: the final decision and interim decisions pertaining to design change not covered by the previous three rules
- At any stage, the data may be analyzed and next stages redesigned taking into account all available data

Classification

	Compound Progression Stages	
Disease selection Target Family selection Target Family to candidate to candidate	FTIM to Commit to PoC/Phase II Phase III to Phase III Phase III to launch	Lifecycle Manage- ment
SINGLE ARM TRIALS		
Two-stage Designs		
Screening Designs		
TWO-ARM TRIALS		
Group Sequential Designs		
Information Based Designs		
Adaptive GSD (Flexible Designs)		
MULTI-ARM TRIALS		
Bayesian Designs		
Group Sequential Designs		
Flexible Designs		
DOSE-FINDING STUDIES		
Dose-escalation designs		
Dose-finding designs (Flexible)		
Adaptive model-based dosefinding		
SEAMLESS DESIGNS		
Dose-escalation: efficacy/toxicity		
Learning/Confirming in Phase II/III		5

Achieving the goals

- The objective of a clinical trial may be either
 - to target the MTD or MED or to find the therapeutic range
 - or to determine the OSD (Optimal Safe Dose) to be recommended for confirmation
 - or to confirm efficacy over control in Phase III clinical trial
 - This clinical goal is usually determined by
 - the clinicians from the pharmaceutical industry
 - practicing physicians
 - key opinion leaders in the field, and
 - the regulatory agency

Achieving the goals

- Once agreement has been reached on the objective, it is the statistician's responsibility to provide the appropriate design and statistical inferential structure required to achieve that goal
- There are plenty of available designs on statistician's shelf
- The greatest challenge is their implementation
- Adaptive designs have much more to offer than the rigid conventional parallel group designs in clinical trials

Critical Path Opportunity

- Model-based approaches to integrating knowledge and improving drug development decision making
 - Dose-response (exposure-response) modeling
 - Efficacy-toxicity response modeling
 - Drug combination modeling
 - Drug and disease modeling
- Exploration of innovative, alternative clinical trial designs using models
 - Adaptive dose finding
 - Enrichment approaches
 - Randomized withdrawal studies

Case Study 1

- Gold pass compound XXX
 - lead indication in Psychiatry (anxiety & depression)
 - secondary indications in Neuropathic pain, RLS & FMS
- Objectives : To establish superiority of XXX dose(s) versus placebo
 - Confirm efficacy (and durability of response)
 - 8 week treatment, but expect treatment effect at 2 weeks
 - correlation between early and late treatment effects
 - Establish safety profile
 - Establish dose-response
- Strategic Aim:
 - pivotal quality to potentially support registration

Study Designs

- Last thing we want is to get to the end only to discover
 - no doses are effective OR
 - we missed obtaining a significant result because our original assumptions were too optimistic
- Standard Dose Ranging Design
 - known entity, but lacks flexibility

Adaptive Design

- Potential savings in terms of both resource and time if there are clear signs that the compound does not work
- Allows for addition of more patients to a promising dose
 - Protects against underestimate of variance
- Potential to get to decision quicker, e.g. 5 9 months
- Full data package on doses of interest
- Statistical validity maintained

Details of the Design

Primary Endpoint:	PI-NRS change from Baseline at 8 th W of treatment
Primary Goal:	Comparison of three doses (LD, MD, HD) with Plb
Target Difference:	1.3 units
STDeviation:	2.1 units
Type I error:	α = 0.05 (adjustment for multiplicity α = 0.05/3 = 0.017)
Power:	90%
Traditional Dsgn:	4 parallel groups - 72 patients/per arm (total 288)
Adaptive Dsgn:	3 stage inverse-normal combination test
Efficacy Bndry:	O'Brien-Fleming type
Futility Bndry:	nominal levels: (0.5, 0.5)
Inflation Factor:	1.025 - maximum 75 patients/arm

MCP 2007 Vienna

MCP 2007 Vienna

Case Study 2

- Phase II Study: Treatment of Acute Migraine during the Mild Headache Phase with YYY compound
 - Allocation Rule: according to CRM procedure
 - Sampling Rule: after each observation
 - **Stopping Rule:** for efficacy/futility
 - Decision Rule: update the model (oneparameter logistic regression)

Details of the Design

Primary Endpoint:	Pain free by 2 hours after treatment
Primary Goal:	To identify the MED (60% of subjects reporting cessation of migraine pain by 2 hours)
	To establish dose-response relationship of YYY when dosing during the mild phase of a migraine attack
Doses:	[5, 15, 30, 60, 120, 180] mg of YYY and Plbo
Max Number Patients:	126 (feasibility considerations)
Stopping for Efficacy:	When 52 patients are treated at MED
Stopping for Futility:	After at least 39 patients are treated at Plbo and HD and the difference in proportions is less than 0.1
Final Dose Response:	four-parameter logistic regression

Adaptive Design Process

Logistical Challenges

- Continually adapting design:
 - requires continuous reassessment of response data
 - ability to update a statistical model and the randomisation on an ongoing basis
- Treatment of early/ mild migraine headache necessitates an outpatient study
- Need access to a system which can collect response data and update a statistical model to determine treatment allocation
- Patients will need to make the phone call to find out their treatment allocation **not** the sites
- Each patient will need to be provided with all 7 possible doses
- Patients will need to report back their response

Study medication packs

- 7 possible doses:
 [0, 5, 15, 30, 60, 120, 180]mg
- 4 possible tablet strengths: Placebo, 5, 30 & 90 mg
- To provide all possible doses
 & double blind the study, each
 dose is made up of 3 tablets
- Outpatient study
 - patients need to be able to find the correct dose quickly
 - each dose requires each treatment pack

Simulation: Early Effect

Subjects 1.00 (, 0.75 ∭0.50 U______ 0.25 0.00 Dose strength

Scenario response results

MCP 2007 Vienna

Simulation: Small Effect

Simulation: Flat Dose Response

Simulated Dose Response

Case Study 3

- Dose-Ranging Study to evaluate the analgesic efficacy of a single dose of ZZZ in the treatment of acute pain associated with oral surgery
 - Allocation Rule: according to D-optimal design
 - Sampling Rule: three-stage rule
 - Stopping Rule: for lack of assay sensitivity/futility
 - Decision Rule: update the model (fourparameter logistic regression)

Details of the Design

Primary Endpoint:	TOTPAR8 Score by 8 hours after treatment
Primary Goal:	To identify the ED80: the dose achieving 80% of the treatment effect of Ctrl versus Plbo
	To establish dose-response relationship of ZZZ when dosing during the mild phase of a migraine attack
Doses:	[150, 300, 450, 600, 750, 900] mg of ZZZ, Plbo and Ctrl
Max Number Patients:	180 (feasibility considerations): 30 sub/arm for 90% power at 8 units diff. in TOTPAR8, STD=10.7, α = 0.05
Stopping for LAS:	After 10 and 15 subjects are treated on Ctrl
Stopping for Futility:	After 10 and 15 subjects are treated on ZZZ 900mg using Pocock type boundary
Final Dose Response:	four-parameter logistic regression

Adaptive Design Process

Primary Response: TOTPAR8

Boundaries for Early Stopping

Simulation 1: Design

 $\theta = (3, 15, 200, 4)$

Simulation 1: Benchmark Dose Selection

Design	S.Size	CI width	Efficiency
Fixed	180	138.02	1.734
Adaptive	163.44	115.63	1.680

Simulation 2: Design

 $\theta = (3, 15, 400, 4)$

Simulation 2: Benchmark Dose Selection

Design	S.Size	CI width	Efficiency
Fixed	180	248.98	1.799
Adaptive	167.19	200.51	1.750

Simulation 3: Design

 $\theta = (3, 15, 600, 4)$

Simulation 3: Benchmark Dose Selection

Design	S.Size	CI width	Efficiency
Fixed	180	297.96	1.139
Adaptive	166.95	286.22	1.100

MCP 2007 Vienna

Simulation 4: Design

 $\theta = (3, 15, 800, 4)$

Simulation 4: Benchmark Dose Selection

Future prospects

- Adaptive Designs
 - Should be a part of a "new product development toolkit"
 - Provide a more ethical treatment of patients in the trials
 - Have the potential to improve the quality, speed and efficiency of drug development
- Implementing Adaptive Designs requires
 - Careful planning
 - Increased upfront work (simulations)
 - Integration of data capture, drug supply management, and interactive communication system