Asymptotic improvements of the Benjamini-Hochberg method for FDR control based on an asymptotically optimal rejection curve

H. Finner 1 , Th. Dickhaus 1 and M. Roters 2

¹Institute of Biometrics & Epidemiology German Diabetes Center Leibniz-Institute at the Heinrich-Heine-University, Duesseldorf, Germany

²Omnicare Clinical Research, Biometrics Department, Cologne, Germany

MCP 2007, Vienna

・ロット 御マ キョマ キョン

Overview

Asymptotics: In what sense and why?

LSU procedure and Simes' line

Derivation of the asymptotically optimal rejection curve (AORC)

Procedures based on the AORC

Example: Keuls (1952) - pairwise comparisons

Reference:

Finner, H., Dickhaus, T. and Roters, M. (2007).

On the false discovery rate and an asymptotically optimal rejection curve.

Submitted for publication, in revision.

Asymptotics: In what sense and why?

Due to technical developments in many scientific fields, the number n of hypotheses to be tested simultaneously can nowadays become **almost arbitrary large**:

- Genetics, Microarrays: e.g. $n = 30\ 000$ genes / hypotheses
- Genome-wide association studies, SNPs: e.g. $n = 5 \times 10^5$ and soon up to 10^6 SNPs / hypotheses
- Astronomy: signal detection, $n \ge 100\ 000$
- Neurology: Identification of active voxels in the human brain (fMRI), n ≥ 1000
- **but:** the sample sizes k_i , i = 1, ..., n, for the individual tests are typically much smaller than n !

Linear step-up procedure and ecdf

The empirical cumulative distribution function (ecdf) of the *p*-values is defined by

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[0,t]}(p_i).$$

Simes' rejection line: $r_{\alpha}(t) = t/\alpha$, $t \in [0, \alpha]$

Critical values of the LSU-procedure: $\alpha_{i:n} = i\alpha/n = r_{\alpha}^{-1}(i/n)$ The BH-procedure is equivalent to setting

$$t^* = \sup\{t \in [0,\alpha] : F_n(t) \ge r_\alpha(t)\}$$

and rejecting all H_i with $p_i \leq t^*$.

t^{*}: largest crossing point (LCP) of F_n and r_α

Simes' line and ecdf, $\alpha = 0.1$

$$X_i \sim N(\mu_i, 1), H_i : \mu_i = 0, i = 1, \dots, n,$$

 $n = 50, n_0 = 40, \zeta_n = n_0/n = 0.8, X_i \sim N(2, 1)$ for $i \in I_{n,1}$

・ロト ・四ト ・ヨト ・ヨト

Question:

Since the FDR of the LSU-procedure is bounded by

 $\frac{n_0}{n}\alpha$

and therefore the test $\varphi_{(n)}^{LSU}$ does not exhaust the pre-specified level α in case of $n_0 < n$, it may be asked:

Is it possible to derive a better rejection curve ?

First step: Identification of least favorable parameter configurations (LFCs) (already covered by Helmut Finner before)

・ロット 御マ キョマ キョン

Dirac-uniform models as LFCs

Theorem (Benjamini & Yekutieli (2001)).

If $p_i \sim U([0, 1])$, $i \in I_{n,0}$, stochastically independent and $(p_i : i \in I_{n,0})$, $(p_i : i \in I_{n,1})$ stochastically independent, then a step-up procedure $\varphi_{(n)}^{SU}$ with critical values $\alpha_{1:n} \leq \cdots \leq \alpha_{n:n}$ has the following properties: If

$\alpha_{i:n}/i$ is increasing (decreasing) in *i* (1)

and the distribution of $(p_i : i \in I_{n,1})$ decreases stochastically, then the FDR of $\varphi_{(n)}^{SU}$ increases (decreases).

If $\alpha_{i:n}/i$ is increasing in *i*, it follows that the FDR becomes largest for $p_i \sim \delta_0 \ \forall i \in I_{n,1}$ (Dirac-uniform model).

In DU-models, analytic calculations are possible!

Asymptotic Dirac-uniform model: $DU(\zeta)$

Assumptions:

Independent *p*-values p_1, \ldots, p_n ;

 $n_0 = n_0(n)$ null hypotheses true with

$$\lim_{n \to \infty} \frac{n_0(n)}{n} = \zeta \in (0, 1).$$

 $n_0 p$ -values U([0, 1])-distributed (corresp. hypotheses true)

 $n_1 = n - n_0 p$ -values δ_0 -distributed (corresp. hypotheses false)

Then the ecdf of the *p*-values converges (Glivenko-Cantelli) for $n \to \infty$ to

$$G_{\zeta}(x) = (1 - \zeta) + \zeta x$$
 for all $x \in [0, 1]$.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Heuristic for an asymptotically optimal rejection curve

Assume we reject all H_i with $p_i \le x$ for some $x \in (0, 1)$. Then the FDR (depending on ζ and x) under DU(ζ) is asymptotically given by

$$\mathsf{FDR}_{\zeta}(x) = rac{\zeta x}{(1-\zeta)+\zeta x}.$$

Aim: Find an optimal threshold x_{ζ} (say), such that

 $FDR \equiv \alpha$ for all $\zeta \in (\alpha, 1)$.

We obtain:

$$\operatorname{FDR}_{\zeta}(x_{\zeta}) = \alpha \iff x_{\zeta} = \frac{\alpha(1-\zeta)}{\zeta(1-\alpha)}.$$

Asymptotically optimal rejection curve

<u>Ansatz</u>: Rejection curve f_{α} and G_{ζ} shall cross each other

in x_{ζ} , i.e., $f_{\alpha}(x_{\zeta}) = G_{\zeta}(x_{\zeta})$.

Plugging in x_{ζ} derived above yields

$$f_{\alpha}\left(\frac{\alpha(1-\zeta)}{\zeta(1-\alpha)}\right) = \frac{1-\zeta}{1-\alpha}.$$

Substituting
$$t = \frac{\alpha(1-\zeta)}{\zeta(1-\alpha)} \iff \zeta = \frac{\alpha}{(1-\alpha)t+\alpha}$$
,

we get that $f_{\alpha}(t):=rac{t}{(1-lpha)t+lpha}, \ t\in[0,1],$

is the curve solving the problem!

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Asymptotically optimal rejection curve for $\alpha = 0.1$

DDZ ۱۹۹۰ ت (۲۰۰۵) (۲۰۰۰)

Critical values, step-up-down procedure

The critical values induced by f_{α} are given by

$$\alpha_{i:n} = f_{\alpha}^{-1}(\frac{i}{n}) = \frac{\frac{i}{n}\alpha}{1 - \frac{i}{n}(1 - \alpha)} = \frac{i\alpha}{n - i(1 - \alpha)}, \ i = 1, \dots, n.$$
 (2)

Due to $\alpha_{n:n} = 1$, a **step-up** procedure based on f_{α} cannot work. Possible solutions:

(A) Step-up-down procedure with parameter $\lambda \in (0, 1)$: $F_n(\lambda) \ge f_\alpha(\lambda) \Rightarrow t^* = \inf\{p_i > \lambda : F_n(p_i) < f_\alpha(p_i)\}$ (SD-branch), $F_n(\lambda) < f_\alpha(\lambda) \Rightarrow t^{**} = \sup\{p_i < \lambda : F_n(p_i) \ge f_\alpha(p_i)\}$ (SU-branch).

Reject all H_i with $p_i < t^*$ or $p_i \le t^{**}$, respectively.

SUD-procedure for $\lambda = 0.3, 0.6$ ($n = 50, \alpha = 0.1$)

Modified step-up procedure

(B) Step-up with *linearly continued* f_{α} , e. g.

$$\tilde{f}_{\alpha}(x) = f_{\alpha}(x) \mathbf{1}_{[0,\kappa]}(x) + x f_{\alpha}(\kappa) / \kappa \mathbf{1}_{(\kappa,\kappa(1-\alpha)+\alpha]}(x).$$

(C) Step-up with *truncated* f_{α} :

$$\tilde{f}_{\alpha}(x) = f_{\alpha}(x) \mathbf{1}_{[0,\kappa]}(x) + \infty \mathbf{1}_{(\kappa,1]}(x).$$

For the adjustments (A), (B) and (C), it can be shown that

 $\forall \vartheta \in \Theta: \ \limsup_{n \to \infty} \mathsf{FDR}_\vartheta(\varphi_{(n)}) \leq \min\{\alpha, \zeta\}.$

・ロット (雪) (日) (日)

Modified curves for step-up procedures

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

SU-test with linearly continued f_{α} , finite case ($n = 100, 500, 1000, \alpha = 0.05$)

For n = 100 maximum FDR under DU in case of $n_0 = 16$ with numerical value FDR_{16,100} ≈ 0.05801 .

(日)

Advantage of step-up

If $\alpha_{i:n}/i$ is increasing in *i*, then the FDR of a step-up procedure based on $(\alpha_{i:n})_{i=1,...,n}$ becomes largest in the Dirac-uniform models and its maximum value can therefore be calculated exactly.

That means, one can find a suitable adjustment of f_{α} leading to strict (and exact) FDR control for fixed *n*.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Anyhow, such calculations rely on the joint distribution function of order statistics which can only be evaluated recursively (which is numerically difficult).

Exact finite adjustment (for step-up)

(Slight) modification of f_{α} or its critical values, e. g.

$$\alpha_{i:n} = \frac{i\alpha}{n+\beta_n-i(1-\alpha)}, \ i=1,\ldots,n,$$

for a suitable adjustment constant $\beta_n > 0$.

(Same as: Use $\tilde{f}_{\alpha}(t) = (1 + \beta_n/n) f_{\alpha}(t), t \in [0, \alpha/(\alpha + \beta/n)]$.)

n = 100 leads to $\beta_{100} \approx 1.76$.

Ray of light:

BENJAMINI, Y., KRIEGER, A. M. AND YEKUTIELI, D. (2006). Biometrika **93**, 3, 491-507: SD-procedure with universal adjustment constant $\beta_n \equiv 1.0$

(日)

Asymptotic optimality of f_{α}

Assumptions:

(a)
$$p_i \sim U([0, 1])$$
 iid, $i \in I_{n,0}$,
(b) $(p_i : i \in I_{n,0}), (p_i : i \in I_{n,1})$
(c) $n_0/n = \zeta_n \to \zeta \in (0, 1)$

stochastically independent stochastically independent

Under (a)-(c), it holds:

- (i) For any $\lambda \in (0, 1)$, the SUD(λ)-procedure based on f_{α} asymptotically sharply controls the FDR at level α .
- (ii) For any $\kappa \in (0, 1)$, the SU-procedure based on the linearly continued version of f_{α} asymptotically controls the FDR at level α . Sharp control is valid for $\zeta \geq \alpha/(\kappa(1-\alpha)+\alpha)$.
- (iii) For any rejection curve *r* providing asymptotic FDR control at level α of the SUD(λ)-procedure based on *r*, we have

$$\forall t \in [0, \lambda] : r(t) \geq f_{\alpha}(t),$$

$$\forall t \in (\lambda, 1] : r(t) \leq f_{\alpha}(t) \Rightarrow \forall t \in (\lambda, 1] : r(t) = f_{\alpha}(t).$$

Gain of power

$$\mathsf{power}_n(\varphi) = \mathbb{E}_{\vartheta}\left(\frac{S_n}{n_1 \vee 1}\right)$$

 $X_i \sim N(\mu_i, 1), H_i: \mu_i = 0, i = 1, \dots, n, \alpha = 0.1, \lambda = 0.6$

 $n = 50, \ n_0 = 20, \ \zeta_n = n_0/n = 0.4, \ X_i \sim N(2, 1) \ \text{for} \ i \in I_{n, 1}$

Illustrative Example

Keuls (1952, Euphytica 1, 112-122) described a field trial with k = 13 cabbage varieties from 1950 as follows:

A trial field had been divided into 39 plots, grouped into 3 blocks of 13 plots each. In each block the 13 varieties to be investigated were planted out (a randomized block design). During this trial all plots were treated in exactly the same way. The purpose was to learn which variety would give the highest gross yield per cabbage and which the lowest, in other words to find approximately the order of the varieties according to gross yield per cabbage.

Stochastic modelling in Keuls' example

Model:
$$X_{ij} = \mu_i + \beta_j + \epsilon_{ij}, \ j = 1, 2, 3, \ i = 1, \dots, 13,$$

where $\epsilon_{ij} \sim N(0, \sigma^2)$ (stochastically independent),

 μ_i average gross yield of variety *i*,

 β_j block effect of block *j*.

Ordered sample means $\overline{x}_{i} = \frac{1}{3} \sum_{j=1}^{3} x_{ij}$:

176.0, 152.7, 150.7, 141.7, 132.0, 131.0, 129.0, 128.7, 124.3, 120.7, 111.3, 100.7, 97.7.

Pooled variance estimation:

$$s^2 = \frac{1}{(12-1)(3-1)} \sum_{i=1}^{13} \sum_{j=1}^{3} (x_{ij} - \bar{x}_{i.} - \bar{x}_{.j} + \bar{x}_{..})^2 = 124.29$$

Degrees of freedom: $\nu = 24$

Pairwise comparisons in Keuls' example

All varieties shall be compared with each other.

This leads to the formulation of the (pairs of) hypotheses

 $H_{ij}: \mu_i = \mu_j \text{ versus } K_{ij}: \mu_i \neq \mu_j, \ 1 \le i < j \le k = 13.$

Consequently, the family consists of

$$\binom{k}{2} = k(k-1)/2 = 6 \times 13 = 78$$

null hypotheses. Suitable test statistics are given by

$$T_{ij} = \sqrt{3/2} |\overline{X}_{i\cdot} - \overline{X}_{j\cdot}| / S.$$

A B > A B > A B >

Under H_{ij} , we have $T_{ij} \sim t_{24}$ (Student's *t*-distribution).

Student's *t*-statistics in Keuls' example

$$t_{ij} = \sqrt{3/2} |\overline{x}_{i.} - \overline{x}_{j.}|/s$$

	2	3	4	5	6	7	8	9	10	11	12	13
1	2.563	2.783	3.772	4.834	4.944	5.163	5.2	5.676	6.079	7.104	8.276	8.605
2		0.22	1.208	2.27	2.38	2.6	2.637	3.113	3.515	4.541	5.712	6.042
3			0.989	2.051	2.16	2.38	2.417	2.893	3.296	4.321	5.493	5.822
4				1.062	1.172	1.392	1.428	1.904	2.307	3.332	4.504	4.834
5					0.11	0.33	0.366	0.842	1.245	2.27	3.442	3.772
6						0.22	0.256	0.732	1.135	2.16	3.332	3.6619
7							0.037	0.513	0.915	1.941	3.113	3.442
8								0.476	0.879	1.904	3.076	3.406
9									0.403	1.428	2.6	2.929
10										1.025	2.197	2.527
11											1.172	1.501
12												0.33

Student's *t*-statistics in Keuls' example

$$t_{ij} = \sqrt{3/2} |\overline{x}_{i.} - \overline{x}_{j.}|/s$$

	2	3	4	5	6	7	8	9	10	11	12	13
1	2.563	2.783	3.772	4.834	4.944	5.163	5.2	5.676	6.079	7.104	8.276	8.605
2		0.22	1.208	2.27	2.38	2.6	2.637	3.113	3.515	4.541	5.712	6.042
3			0.989	2.051	2.16	2.38	2.417	2.893	3.296	4.321	5.493	5.822
4				1.062	1.172	1.392	1.428	1.904	2.307	3.332	4.504	4.834
5					0.11	0.33	0.366	0.842	1.245	2.27	3.442	3.772
6						0.22	0.256	0.732	1.135	2.16	3.332	3.6619
7							0.037	0.513	0.915	1.941	3.113	3.442
8								0.476	0.879	1.904	3.076	3.406
9									0.403	1.428	2.6	2.929
10										1.025	2.197	2.527
11											1.172	1.501
12												0.33

Number of rejections with the BH-method ($t_{ij} \ge 2.38$) : 41

・日・ ・四・ ・田・ ・田・

Student's *t*-statistics in Keuls' example

$$t_{ij} = \sqrt{3/2} |\overline{x}_{i.} - \overline{x}_{j.}|/s$$

	2	3	4	5	6	7	8	9	10	11	12	13
1	2.563	2.783	3.772	4.834	4.944	5.163	5.2	5.676	6.079	7.104	8.276	8.605
2		0.22	1.208	2.27	2.38	2.6	2.637	3.113	3.515	4.541	5.712	6.042
3			0.989	2.051	2.16	2.38	2.417	2.893	3.296	4.321	5.493	5.822
4				1.062	1.172	1.392	1.428	1.904	2.307	3.332	4.504	4.834
5					0.11	0.33	0.366	0.842	1.245	2.27	3.442	3.772
6						0.22	0.256	0.732	1.135	2.16	3.332	3.6619
7							0.037	0.513	0.915	1.941	3.113	3.442
8								0.476	0.879	1.904	3.076	3.406
9									0.403	1.428	2.6	2.929
10										1.025	2.197	2.527
11											1.172	1.501
12												0.33

Number of rejections with the BH-method ($t_{ij} \ge 2.38$) : 41 Number of rejections with the AORC (SUD) ($t_{ij} \ge 1.904$) : 51

Keuls' example: Simes' line, AORC and ecdf of the *p*-values, $\alpha = 0.05$

