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Asymptotics: In what sense and why?

Due to technical developments in many scientific fields, the
number n of hypotheses to be tested simultaneously can
nowadays become almost arbitrary large:

• Genetics, Microarrays: e.g. n = 30 000 genes / hypotheses
• Genome-wide association studies, SNPs: e.g. n = 5× 105

and soon up to 106 SNPs / hypotheses
• Astronomy: signal detection, n ≥ 100 000
• Neurology: Identification of active voxels in the human

brain (fMRI), n ≥ 1000

• but: the sample sizes ki, i = 1, . . . , n, for the individual tests
are typically much smaller than n !
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Linear step-up procedure and ecdf

The empirical cumulative distribution function (ecdf) of the
p-values is defined by

Fn(t) =
1
n

n∑
i=1

1[0,t](pi).

Simes’ rejection line: rα(t) = t/α, t ∈ [0, α]

Critical values of the LSU-procedure: αi:n = iα/n = r−1
α (i/n)

The BH-procedure is equivalent to setting

t∗ = sup{t ∈ [0, α] : Fn(t) ≥ rα(t)}

and rejecting all Hi with pi ≤ t∗.

t∗: largest crossing point (LCP) of Fn and rα
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Simes’ line and ecdf, α = 0.1

Xi ∼ N(µi, 1), Hi : µi = 0, i = 1, . . . , n,

n = 50, n0 = 40, ζn = n0/n = 0.8, Xi ∼ N(2, 1) for i ∈ In,1
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Question:

Since the FDR of the LSU-procedure is bounded by

n0

n
α

and therefore the test ϕLSU
(n) does not exhaust the

pre-specified level α in case of n0 < n, it may be asked:

Is it possible to derive a better rejection curve ?

First step: Identification of least favorable
parameter configurations (LFCs)

(already covered by Helmut Finner before)
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Dirac-uniform models as LFCs
Theorem (Benjamini & Yekutieli (2001)).

If pi ∼ U([0, 1]), i ∈ In,0, stochastically independent and
(pi : i ∈ In,0), (pi : i ∈ In,1) stochastically independent,
then a step-up procedure ϕSU

(n) with critical values
α1:n ≤ · · · ≤ αn:n has the following properties: If

αi:n/i is increasing (decreasing) in i (1)

and the distribution of (pi : i ∈ In,1) decreases stochastically,
then the FDR of ϕSU

(n) increases (decreases).

If αi:n/i is increasing in i, it follows that the FDR becomes
largest for pi ∼ δ0 ∀i ∈ In,1 (Dirac-uniform model).

In DU-models, analytic calculations are possible!
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Asymptotic Dirac-uniform model: DU(ζ)

Assumptions:

Independent p-values p1, . . . , pn;

n0 = n0(n) null hypotheses true with

lim
n→∞

n0(n)
n

= ζ ∈ (0, 1).

n0 p-values U([0, 1])-distributed (corresp. hypotheses true)

n1 = n− n0 p-values δ0-distributed (corresp. hypotheses false)

Then the ecdf of the p-values converges (Glivenko-Cantelli)

for n →∞ to

Gζ(x) = (1− ζ) + ζx for all x ∈ [0, 1].
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Heuristic for an asymptotically optimal rejection curve

Assume we reject all Hi with pi ≤ x for some x ∈ (0, 1).

Then the FDR (depending on ζ and x) under DU(ζ) is
asymptotically given by

FDRζ(x) =
ζx

(1− ζ) + ζx
.

Aim: Find an optimal threshold xζ (say), such that

FDR ≡ α for all ζ ∈ (α, 1).

We obtain:

FDRζ(xζ) = α ⇐⇒ xζ =
α(1− ζ)
ζ(1− α)

.
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Asymptotically optimal rejection curve

Ansatz: Rejection curve fα and Gζ shall cross each other

in xζ , i.e., fα(xζ) = Gζ(xζ).

Plugging in xζ derived above yields

fα

(
α(1− ζ)
ζ(1− α)

)
=

1− ζ

1− α
.

Substituting t =
α(1− ζ)
ζ(1− α)

⇐⇒ ζ =
α

(1− α)t + α
,

we get that fα(t) :=
t

(1− α)t + α
, t ∈ [0, 1],

is the curve solving the problem!
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Asymptotically optimal rejection curve for α = 0.1
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Critical values, step-up-down procedure

The critical values induced by fα are given by

αi:n = f−1
α (

i
n
) =

i
nα

1− i
n(1− α)

=
iα

n− i(1− α)
, i = 1, . . . , n. (2)

Due to αn:n = 1, a step-up procedure based on fα cannot work.

Possible solutions:

(A) Step-up-down procedure with parameter λ ∈ (0, 1):

Fn(λ) ≥ fα(λ) ⇒ t∗ = inf{pi > λ : Fn(pi) < fα(pi)} (SD-branch),

Fn(λ) < fα(λ) ⇒ t∗∗ = sup{pi < λ : Fn(pi) ≥ fα(pi)} (SU-branch).

Reject all Hi with pi < t∗ or pi ≤ t∗∗, respectively.
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SUD-procedure for λ = 0.3, 0.6
(n = 50, α = 0.1)
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Modified step-up procedure

(B) Step-up with linearly continued fα, e. g.

f̃α(x) = fα(x) 1[0,κ](x) + xfα(κ)/κ 1(κ,κ(1−α)+α](x).

(C) Step-up with truncated fα:

f̃α(x) = fα(x) 1[0,κ](x) +∞ 1(κ,1](x).

For the adjustments (A), (B) and (C), it can be shown that

∀ϑ ∈ Θ : lim sup
n→∞

FDRϑ(ϕ(n)) ≤ min{α, ζ}.
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Modified curves for step-up procedures
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SU-test with linearly continued fα, finite case
(n = 100, 500, 1000, α = 0.05)

For n = 100 maximum FDR under DU in case of
n0 = 16 with numerical value FDR16,100 ≈ 0.05801.
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Advantage of step-up

If αi:n/i is increasing in i, then the FDR of a step-up
procedure based on (αi:n)i=1,...,n becomes largest in the
Dirac-uniform models and its maximum value can therefore
be calculated exactly.

That means, one can find a suitable adjustment of fα
leading to strict (and exact) FDR control for fixed n.

Anyhow, such calculations rely on the joint distribution
function of order statistics which can only be evaluated
recursively (which is numerically difficult).
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Exact finite adjustment
(for step-up)

(Slight) modification of fα or its critical values, e. g.

αi:n =
iα

n + βn − i(1− α)
, i = 1, . . . , n,

for a suitable adjustment constant βn > 0.

(Same as: Use f̃α(t) = (1 + βn/n) fα(t), t ∈ [0, α/(α + β/n)].)

n = 100 leads to β100 ≈ 1.76.

Ray of light:

BENJAMINI, Y., KRIEGER, A. M. AND YEKUTIELI, D. (2006).
Biometrika 93, 3, 491-507:
SD-procedure with universal adjustment constant βn ≡ 1.0
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Asymptotic optimality of fα
Assumptions:

(a) pi ∼ U([0, 1]) iid, i ∈ In,0, stochastically independent
(b) (pi : i ∈ In,0), (pi : i ∈ In,1) stochastically independent
(c) n0/n = ζn → ζ ∈ (0, 1)

Under (a)-(c), it holds:
(i) For any λ ∈ (0, 1), the SUD(λ)-procedure based on fα

asymptotically sharply controls the FDR at level α.
(ii) For any κ ∈ (0, 1), the SU-procedure based on the linearly

continued version of fα asymptotically controls the FDR at
level α. Sharp control is valid for ζ ≥ α/(κ(1− α) + α).

(iii) For any rejection curve r providing asymptotic FDR control
at level α of the SUD(λ)-procedure based on r, we have

∀t ∈ [0, λ] : r(t) ≥ fα(t),
∀t ∈ (λ, 1] : r(t) ≤ fα(t) ⇒ ∀t ∈ (λ, 1] : r(t) = fα(t).
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Gain of power

powern(ϕ) = Eϑ

(
Sn

n1 ∨ 1

)
Xi ∼ N(µi, 1), Hi : µi = 0, i = 1, . . . , n, α = 0.1, λ = 0.6

n = 50, n0 = 20, ζn = n0/n = 0.4, Xi ∼ N(2, 1) for i ∈ In,1
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Illustrative Example

Keuls (1952, Euphytica 1, 112-122) described a field trial with
k = 13 cabbage varieties from 1950 as follows:

A trial field had been divided into 39 plots, grouped into
3 blocks of 13 plots each. In each block the 13 varieties
to be investigated were planted out (a randomized block
design). During this trial all plots were treated in exactly
the same way. The purpose was to learn which vari-
ety would give the highest gross yield per cabbage and
which the lowest, in other words to find approximately
the order of the varieties according to gross yield per
cabbage.
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Stochastic modelling in Keuls’ example

Model: Xij = µi + βj + εij, j = 1, 2, 3, i = 1, . . . , 13,

where εij ∼ N(0, σ2) (stochastically independent),

µi average gross yield of variety i,

βj block effect of block j.

Ordered sample means xi· = 1
3
∑3

j=1 xij :

176.0, 152.7, 150.7, 141.7, 132.0, 131.0, 129.0,
128.7, 124.3, 120.7, 111.3, 100.7, 97.7.

Pooled variance estimation:

s2 = 1
(12−1)(3−1)

∑13
i=1

∑3
j=1(xij − xi· − x·j + x··)2 = 124.29

Degrees of freedom: ν = 24
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Pairwise comparisons in Keuls’ example

All varieties shall be compared with each other.

This leads to the formulation of the (pairs of) hypotheses

Hij : µi = µj versus Kij : µi 6= µj, 1 ≤ i < j ≤ k = 13.

Consequently, the family consists of(k
2

)
= k(k − 1)/2 = 6× 13 = 78

null hypotheses. Suitable test statistics are given by

Tij =
√

3/2 |Xi· − Xj·|/S.

Under Hij, we have Tij ∼ t24 (Student’s t-distribution).
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Student’s t-statistics in Keuls’ example

tij =
√

3/2 |xi· − xj·|/s

2 3 4 5 6 7 8 9 10 11 12 13
1 2.563 2.783 3.772 4.834 4.944 5.163 5.2 5.676 6.079 7.104 8.276 8.605
2 0.22 1.208 2.27 2.38 2.6 2.637 3.113 3.515 4.541 5.712 6.042
3 0.989 2.051 2.16 2.38 2.417 2.893 3.296 4.321 5.493 5.822
4 1.062 1.172 1.392 1.428 1.904 2.307 3.332 4.504 4.834
5 0.11 0.33 0.366 0.842 1.245 2.27 3.442 3.772
6 0.22 0.256 0.732 1.135 2.16 3.332 3.6619
7 0.037 0.513 0.915 1.941 3.113 3.442
8 0.476 0.879 1.904 3.076 3.406
9 0.403 1.428 2.6 2.929

10 1.025 2.197 2.527
11 1.172 1.501
12 0.33

Number of rejections with the BH-method (tij ≥ 2.38) : 41
Number of rejections with the AORC (SUD) (tij ≥ 1.904) : 51
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Keuls’ example: Simes’ line, AORC and
ecdf of the p-values, α = 0.05
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