A semi-parametric approach for mixture models, application to local False Discovery Rate estimation

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robin, A. Bar-Hen, L. Pierre (Univ. Paris X)

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robir A semi-parametric approach for mixture models, application to local

< <p>> > < <p>< <p>

Introduction General approach Main result

Comparison of methods Conclusion

Mixture model

two-populations

$$g(x) = af(x) + (1-a)\phi(x)$$

- $\bullet\,$ probability density function φ is known
- probability *a* is unknown
- probability density function *f* is unknown.

Introduction

General approach Main result Application to multiple testing Comparison of methods Conclusion

Applications

- Contamination problems,
 - distribution φ is known,
 - contamination distribution *f* is unknown,
 - proportion *a* of contamination is unknown.
- Multiple testing problems
 - *p*-values under H₀ are uniformly distributed on [0, 1], φ is the uniform distribution,
 - distribution of the *p*-values associated to H₁ is unknown,
 - proportion *a* of observations under H₁ is unknown.

Data set relating to speed of light

measurements made by Simon Newcomb

(in Gelman et al in Bayesian Data Analysis (2004))

 $g(x) = af(x) + (1-a)\phi(x)$

Idea Build a kernel nonparametric estimate of f using the information we have on ϕ

Issue

- It is easy to build a kernel density of the overall distribution *g*, but that is not what we want to do
- we want to build a kernel estimate of *f*, so we need to know which observations are generated under *f*.

э.

• this information is not available...

Solution Estimate the probability for each observation of being generated under f (or under ϕ).

Basic relation 1

- Consider an observation *x*
- Assume that *f* and *a* are known,

The probability $\tau(x)$ that this observation has been generated under f is

$$\tau(x) = \frac{af(x)}{g(x)} = \frac{af(x)}{af(x) + (1-a)\phi(x)} \dots$$

But f and a are unknown, we just wanted to estimate them !

Basic relation 2

The standard kernel estimate of f is

$$\widehat{f}(x) = \left[\sum_{i} Z_{i} k_{i}(x)\right] / \sum_{i} Z_{i} .$$

where

- *k* is a kernel pdf
- $k_i(x) = k[(x x_i)/h]/h$
- *h* is the bandwidth of the kernel
- Z_i is one if the data x_i comes from f and 0 otherwise.

Basic relation 2

$$\widehat{f}(x) = \left[\sum_{i} Z_{i} k_{i}(x)\right] / \sum_{i} Z_{i} .$$

can not be directly used since the $\{Z_i\}$ are unknown.

We replace them with their conditional expectation given the data $\{x_i\}$ (i.e. the posterior probabilities) $\mathbb{E}(Z_i | x_i) = \tau(x_i)$ We get the following estimate for *f*:

$$\widehat{f}(x) = \left(\sum_{i} \tau(x_i) k_i(x)\right) / \sum_{i} \tau(x_i) .$$

This estimate is a *weighted kernel estimate* where each observation is weighted according to its posterior probability to be issued from f.

Consistency constraint

Assume *a* is known. A consistent estimate of f must satisfy the two relations :

 $\widehat{\tau}(x) = \frac{a\widehat{f}(x)}{a\widehat{f}(x) + (1 - a)\phi(x)}.$ $\widehat{f}(x) = \left(\frac{\sum_{i} \widehat{\tau}(x_i)k_i(x)}{\sum_{i} \widehat{\tau}(x_i)}\right) / \frac{\sum_{i} \widehat{\tau}(x_i)}{\sum_{i} \widehat{\tau}(x_i)}.$

Two questions

۲

۲

- How many solutions to the consistency constraint : 0, 1 or > 1?
- If the solution is unique, find an algorithm to obtain it

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Main result

- Under quite general conditions concerning the kernel function k and the known pdf φ,
- for given *a*, and *h* and a given sample $(x_i, i = 1, n)$,

there is a unique solution for \hat{f} (and $\hat{\tau}(x)$).

This solution is given by a fixed-point algorithm.

э.

Fixed-point equation(1)

$$\widehat{\tau}(x) = \frac{a\widehat{f}(x)}{a\widehat{f}(x) + (1-a)\phi(x)}.$$
$$\widehat{f}(x) = \left(\sum_{i} \widehat{\tau}(x_i)k_i(x)\right) / \sum_{i} \widehat{\tau}(x_i)$$
$$\widehat{\tau}(x) = \frac{a\frac{\sum_{i} \widehat{\tau}(x_i)k_i(x)}{\sum_{i} \widehat{\tau}(x_i)}}{a\frac{\sum_{i} \widehat{\tau}(x_i)k_i(x)}{\sum_{i} \widehat{\tau}(x_i)} + (1-a)\phi(x)}$$

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robit A semi-parametric approach for mixture models, application to local

Fixed-point equation(2)

 $(\tau = \tau(x_i), i = 1: n)$ must satisfy the fixed-point equation

 $\widehat{\tau} = \psi(\widehat{\tau})$

where ψ maps \mathbb{R}^n into \mathbb{R}^n :

For all
$$\mathbf{u} = (u_1 \dots u_n) \in \mathbb{R}^n : \psi_j(\mathbf{u}) = \frac{\sum_i u_i b_{ij}}{\sum_i u_i b_{ij} + \sum_i u_i},$$

with

$$b_{ij} = \frac{a}{1-a} \frac{k_i(x_j)}{\phi(x_j)}.$$

< <p>> > < <p>< <p>

э.

Theorem

Theorem

If all coefficients b_{ij} are positive, the function ψ has a unique fixed point \mathbf{u}^* and the sequence $\mathbf{u}^{\ell+1} = \psi(\mathbf{u}^{\ell})$ converges towards it for any initial value \mathbf{u}^0 .

Proof.

Rather technical:

- decomposition of ψ as $\psi = \alpha \circ \beta \circ \gamma$
- Brouwer's theorem
- the distance between two points strictly decreases when the function $\gamma \circ \psi$ is applied.
- The condition on *b* may be relaxed so that non compact kernels are included.

Estimation of a and h

The bandwidth h is obtained by V-fold cross-validation. The following estimate for a is given in the literature in the case of the multiple testing problem:

if the support of the distribution *f* has an upper bound (typically, $(-\infty, \lambda]$), an unbiased estimate of *a* can be proposed: for $x > \lambda$, F(x) = 1, the mixture cdf becomes

$$\mathbf{G}(x) = a + (1 - a)\Phi(x),$$

where G and Φ are the respective cdfs corresponding to g and ϕ .

$$\widehat{a} = \frac{\widehat{G}(\lambda) - \Phi(\lambda)}{1 - \Phi(\lambda)}$$

where \widehat{G} is the empirical cdf of X.

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robit A semi-parametric approach for mixture models, application to local

Application to multiple testing

Local FDR

Defined by Efron(2001) in the context of the multiple testing procedure.

It gives the probability for a given observation to be a false positive In a mixture framework, a natural way to define the local FDR is to consider the posterior probability

$$\ell FDR(x) = \Pr\{Z_i = 0 \mid X_i = x\} = 1 - \tau(x).$$

Our kernel nonparametric estimate of *f* gives directly τ and thus ℓ FDR.

Probit transformation

f: exponential density with mean 0.01 and a = 0.3

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robir A semi-parametric approach for mixture models, application to local

< <p>> > < <p>< <p>

Example: Hedenfalk's data, estimation of a, f and τ

Comparison of 2 breast cancers (BRCA1 / BRCA2), n = 3226 genes

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robir A semi-parametric approach for mixture models, application to local

Example: Hedenfalk's data, control of the FDR

$$\widehat{\text{FDR}}(x_i) = \frac{1}{i} \sum_{j=1}^{i} (1 - \widehat{\tau}(x_j)), \qquad \widehat{\text{FNR}}(x_i) = \frac{1}{n-i} \sum_{j=i+1}^{n} \widehat{\tau}(x_j)$$

$\widehat{\text{FDR}}(x_{(i)})$	i	$P_{(i)}$	$\widehat{\tau}(x_{(i)})$	$\widehat{\text{FNR}}(x_{(i)})$
1%	4	2.510^{-5}	0.988	31.5%
5%	142	3.110^{-3}	0.914	28.7%
10%	296	1.310^{-2}	0.798	25.7%

Table: Number of positive genes for some pre-specified values of the FDR

(1)

Methods compared

LocalFDR Efron(2004): mixture model on the probit transformation of the p-values, locfdr package of R version 1.3.

- 2Gmixt McLachlan(2006): two components gaussian mixture model on the probit transformation of the p-values
- SPmixt semi-parametric mixture model on the probit transformation of the p-values

< <p>> > < <p>< <p>

Simulation experiment

Number of simultaneous tests 1000 a 0.01, 0.05, 0.1, 0.3 shape of f exponential and uniform distributions mean of f 0.001 and 0.01 Number of simulations 500

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robir A semi-parametric approach for mixture models, application to local

э.

Examples of mixtures simulated (probit scale)

Jean-Jacques Daudin, AgroParisTech/INRA, joint work with S. Robir A semi-parametric approach for mixture models, application to local

< <p>> < <p>> < <p>> < <p>> < <p>> < <p>> < <p>< <

Criteria for comparison

$$RMSE_m^s(a, f) = \sqrt{\frac{1}{n} \sum_i \left(\widehat{\tau}_{m,i}^s - \tau_i\right)^2}$$
$$RMSE_m(a, f) = \frac{1}{S} \sum_s RMSE_m^s(a, f)$$

- *s* simulation number *s* (s = 1..S)
- τ_i the posterior probability for the *i*th *p*-value

The quality of the estimates provided by method *m* in the configuration (a, f) is measured by the mean $\text{RMSE}_m(a, f)$.

< <p>> > < <p>< <p>

Simulation results $(f \sim exp(\frac{1}{\mu}))$

Simulation results ($f \sim U[0, 2\mu]$)

Conclusions

- The weighted kernel compares favorably with competitors
- there is very few information about *f*, and *n* is large in multiple testing context → nonparametric density estimates are attractive
- weighted nonparametric density estimates : an emerging field
- need more work to obtain simultaneous estimates for *a* and *f* in place of the present two stages method.