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Mixture model

two-populations
g (x) = a f (x)+ (1−a)φ(x)

probability density function φ is known

probability a is unknown

probability density function f is unknown.
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Applications

Contamination problems,
distribution φ is known,
contamination distribution f is
unknown,
proportion a of contamination is
unknown.

Multiple testing problems
p-values under H0 are uniformly
distributed on [0,1], φ is the
uniform distribution,
distribution of the p-values
associated to H1 is unknown,
proportion a of observations
under H1 is unknown.

Data set relating to speed of light

measurements made by Simon Newcomb

(in Gelman et al in Bayesian Data Analysis (2004))
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g (x) = a f (x)+ (1−a)φ(x)

Idea Build a kernel nonparametric estimate of f using the
information we have on φ

Issue

It is easy to build a kernel density of the overall
distribution g , but that is not what we want to do
we want to build a kernel estimate of f , so we
need to know which observations are generated
under f .
this information is not available...

Solution Estimate the probability for each observation of being
generated under f (or under φ).
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Basic relation 1

Consider an observation x

Assume that f and a are known,

The probability τ(x) that this observation has been generated under
f is

τ(x) = a f (x)

g (x)
= a f (x)

a f (x)+ (1−a)φ(x)
...

But f and a are unknown, we just wanted to estimate them !
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Basic relation 2

The standard kernel estimate of f is

f̂ (x) =
[∑

i
Zi ki (x)

]/∑
i

Zi .

where

k is a kernel pdf

ki (x) = k[(x −xi )/h]/h

h is the bandwidth of the kernel

Zi is one if the data xi comes from f and 0 otherwise.
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Basic relation 2

f̂ (x) =
[∑

i
Zi ki (x)

]/∑
i

Zi .

can not be directly used since the {Zi } are unknown.
We replace them with their conditional expectation given the data
{xi } (i.e. the posterior probabilities) E(Zi | xi ) = τ(xi )
We get the following estimate for f :

f̂ (x) =
(∑

i
τ(xi )ki (x)

)/∑
i
τ(xi ) .

This estimate is a weighted kernel estimate where each observation
is weighted according to its posterior probability to be issued from
f .
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Consistency constraint

Assume a is known. A consistent estimate of f must satisfy the two
relations :

τ̂(x) = a f̂ (x)

a f̂ (x)+ (1−a)φ(x)
.

f̂ (x) =
(∑

i
τ̂(xi )ki (x)

)/∑
i
τ̂(xi ) .

Two questions

How many solutions to the consistency constraint : 0, 1 or > 1?

If the solution is unique, find an algorithm to obtain it
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Main result

Under quite general conditions concerning the kernel function
k and the known pdf φ,

for given a, and h and a given sample (xi , i = 1,n),

there is a unique solution for f̂ (and τ̂(x)).

This solution is given by a fixed-point algorithm.
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Fixed-point equation(1)

τ̂(x) = a f̂ (x)

a f̂ (x)+ (1−a)φ(x)
.

f̂ (x) =
(∑

i
τ̂(xi )ki (x)

)/∑
i
τ̂(xi )

τ̂(x) =
a

∑
i τ̂(xi )ki (x)∑

i τ̂(xi )

a
∑

i τ̂(xi )ki (x)∑
i τ̂(xi ) + (1−a)φ(x)

.
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Fixed-point equation(2)

(τ= τ(xi ), i = 1 : n) must satisfy the fixed-point equation

τ̂=ψ(τ̂)

where ψ maps Rn into Rn :

For all u = (u1 . . .un) ∈Rn :ψ j (u) =
∑

i ui bi j∑
i ui bi j +∑

i ui
,

with

bi j = a

1−a

ki (x j )

φ(x j )
.
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Theorem

Theorem

If all coefficients bi j are positive, the function ψ has a unique fixed
point u∗ and the sequence u`+1 =ψ(u`) converges towards it for any
initial value u0.

Proof.

Rather technical:

decomposition of ψ as ψ= α◦β◦γ
Brouwer’s theorem

the distance between two points strictly decreases when the
function γ◦ψ is applied.

The condition on b may be relaxed so that non compact
kernels are included.
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Estimation of a and h

The bandwidth h is obtained by V-fold cross-validation. The
following estimate for a is given in the literature in the case of the
multiple testing problem:
if the support of the distribution f has an upper bound (typically,
(−∞,λ]), an unbiased estimate of a can be proposed: for x > λ,
F(x) = 1, the mixture cdf becomes

G(x) = a + (1−a)Φ(x),

where G and Φ are the respective cdfs corresponding to g and φ.

â = Ĝ(λ)−Φ(λ)

1−Φ(λ)

where Ĝ is the empirical cdf of X.
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Application to multiple testing

Local FDR
Defined by Efron(2001) in the context of the multiple testing
procedure.
It gives the probability for a given observation to be a false positive
In a mixture framework, a natural way to define the local FDR is to
consider the posterior probability

`FDR(x) = Pr{Zi = 0 | Xi = x} = 1−τ(x).

Our kernel nonparametric estimate of f gives directly τ and thus
`FDR.
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Probit transformation

f : exponential density with mean 0.01 and a = 0.3

raw scale probit scale
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Example: Hedenfalk’s data, estimation of a, f and τ

Comparison of 2 breast cancers (BRCA1 / BRCA2), n = 3226 genes

black lines : empirical blue curve : τ̂(x)

red : f , green : φ, blue : g red : �FDR(x)

x-axis : probit scale x-axis : raw scale
x-axis : P−values for H0 = {gene is not differentially expressed between the

2 conditions }
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Example: Hedenfalk’s data, control of the FDR

�FDR(xi ) = 1

i

i∑
j=1

(1− τ̂(x j )), �FNR(xi ) = 1

n − i

n∑
j=i+1

τ̂(x j )

�FDR(x(i )) i P(i ) τ̂(x(i )) �FNR(x(i ))
1% 4 2.5 10−5 0.988 31.5%
5% 142 3.1 10−3 0.914 28.7%

10% 296 1.3 10−2 0.798 25.7%

Table: Number of positive genes for some pre-specified values of the FDR
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Methods compared

LocalFDR Efron(2004): mixture model on the probit
transformation of the p-values, locfdr package of R
version 1.3.

2Gmixt McLachlan(2006): two components gaussian mixture
model on the probit transformation of the p-values

SPmixt semi-parametric mixture model on the probit
transformation of the p-values
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Simulation experiment

Number of simultaneous tests 1000

a 0.01, 0.05, 0.1, 0.3

shape of f exponential and uniform distributions

mean of f 0.001 and 0.01

Number of simulations 500
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Examples of mixtures simulated (probit scale)

f : exponential pdf f : uniform pdf µ a

0.01 0.3

0.001 0.01
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Criteria for comparison

RMSEs
m(a, f ) =

√
1

n

∑
i

(
τ̂s

m,i −τi

)2

RMSEm(a, f ) = 1

S

∑
s

RMSEs
m(a, f )

s simulation number s (s = 1..S)

τi the posterior probability for the i th p-value

The quality of the estimates provided by method m in the
configuration (a, f ) is measured by the mean RMSEm(a, f ).
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Simulation results ( f ∼ exp( 1
µ

))

µ= 0.001 µ= 0.01

‘O’= default localFDR ‘M’=localFDR-N (0,1) ‘◦’= 2Gmixt
‘+’= SPmixt with h = 0.1 ‘×’= SPmixt with h = 0.2
‘∗’= SPmixt with h fitted using 2-fold cross-validation
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Simulation results ( f ∼ U[0,2µ])

µ= 0.001 µ= 0.01

‘O’= default localFDR ‘M’=localFDR-N (0,1) ‘◦’= 2Gmixt
‘+’= SPmixt with h = 0.1 ‘×’= SPmixt with h = 0.2
‘∗’= SPmixt with h fitted using 2-fold cross-validation
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Conclusions

The weighted kernel compares favorably with competitors

there is very few information about f , and n is large in
multiple testing context → nonparametric density estimates
are attractive

weighted nonparametric density estimates : an emerging field

need more work to obtain simultaneous estimates for a and f
in place of the present two stages method.
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