Multiple Testing in Change-Point Problem with Application to Safety Signal Detection

Jie Chen Merck Research Laboratories E-Mail: jie_chen@merck.com

The 5th International Conference on Multiple Comparison Procedures

Vienna, Austria

July 11, 2007

Overview

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

Introduction

Concept/applications Classification Methods

Change-Point Analysis

One changepoint Multiple Changepoints

Multiple Testing

Šidák inequality Closure principle Proposed method

Two-Sequence Change-Point Problem

Example

Example

Introduction (1)

Introduction

- Concept/applications
- Classification
- Methods

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

- Change-point analysis concerns with the inference on the point(s) in a sequence of random process at which the distribution changes
- Applications
 - Statistical quality control Online detection of changes in quality operations
 - Public Health Sequentially monitoring the number of cases of a disease for potential outbreak
 - Medicine Post-marketing surveillance, dose-finding
 - Biomedical signal processing Online detection of biomedical signals such as Eletroencephalogram (EEG) and electrocardiogram (ECG)
 - Meteorology Global warming
 - Finance Detection of business cycles
 - Seismology

Introduction (2)

Introduction

- Concept/applications
- Classification
- Methods

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

Classifications of change-point analysis

- Continuous versus discrete
- Retrospective (fixed sample) versus prospective (online sequential)
- Parametric versus non-parametric
- Frequentist versus Bayesian
- One change-point versus multiple change-points

Introduction (3)

Introduction

- Concept/applications
- Classification
- Methods

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

Statistical methods for change-point analysis

- Likelihood ratio procedures for parametric models
- Non-parametric methods Mann-Whitney U test, Wilcoxon rank test
- Regression-based methods (including curve fitting)
- Cumulative sum (CUSUM) methods
- Bayesian analysis and its variations
- Sequential methods
- information criterion
- Wavelet transformation

One Change-Point Problem (1)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

- Let (X_1, \ldots, X_T) be a sequence of independent random variables, ordered in time interval, each with density function $f(X_i|\mu_i)$ where $E(X_i) = \mu_i, i = 1, \ldots, T$
- Consider the model for one change-point in means at time interval au
- The null hypothesis

$$H_0:\mu_1=\ldots=\mu_T$$

against against

$$H_1: \mu_1 = \ldots = \mu_\tau \neq \mu_{\tau+1} = \ldots = \mu_T$$

for an unknown $\boldsymbol{\tau}$

One Change-Point Problem (2)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

• Let $\mu_1 = \ldots = \mu_\tau = \mu'_0$ with known μ'_0 before the change-point τ and $\mu_{\tau+1} = \ldots = \mu_T = \mu'_1$ with known μ'_1 after the change-point. Then the log likelihood function is

$$\ell(\tau) = \sum_{i=1}^{\tau} \log f(X_i | \mu'_0) + \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_1)$$
(1)

• The log likelihood ratio test statistic for testing H_0 against H_1 is

$$\log \ell(\tau) = \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_0) - \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_1)$$
 (2)

One Change-Point Problem (3)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

• Traditionally, the null hypothesis H_0 of no change-point against H_1 of one change-point over the T time intervals is rejected if

$$2\sup_{\tau} \log \ell(\tau) > \chi^2_{\alpha,1} \tag{3}$$

- The MLE $\hat{\tau}$ of τ is obtained by maximizing (1)
- When μ'_0 and μ'_1 are unknown, the MLE's $\hat{\mu}'_0$, $\hat{\mu}'_1$ and $\hat{\tau}$ can be obtained by simultaneously maximizing (1) w.r.t. μ'_0 , μ'_1 and τ

Multiple Change-Points (1)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

- The test continues sequentially for testing H_{m-1} of m-1change-points against H_m of m change-points, $m = 1, \ldots, T-1$, until an acceptance occurs
- That is, the test starts from m = 0 (against m = 1) towards m = T 1

$$H_{0}: \quad \mu_{1} = \dots = \mu_{T}$$

$$H_{1}: \quad \mu_{1} = \dots = \mu_{\tau} \neq \mu_{\tau+1} = \dots = \mu_{T}$$

$$H_{2}: \quad \mu_{1} = \dots = \mu_{\tau_{1}} \neq \mu_{\tau_{1}+1} =$$

$$\dots = \mu_{\tau_{2}} \neq \mu_{\tau_{2}+1} = \dots = \mu_{T}$$

$$\vdots \qquad \vdots$$

$$H_{T-1}: \quad \mu_{1} \neq \dots \neq \mu_{T}$$

Multiple Change-Points (2)

Introduction

- Change-Point Analysis
- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

- Binary segmentation (Vostrikova 1981)
 - \circ Test for no change point H_0 against one change-point H_1
 - $\circ~$ If H_0 is rejected, test the two subsequences before and after the change-point identified in the above step separately for a change
 - Repeat the process until no change-points are found in any of the subsequences
 - The collection of change-points identified from the above steps are $\{\hat{\tau}_1,\ldots,\hat{\tau}_k\}$ and the estimated number of change-points is then k

Multiple Change-Points (3)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

A hierarchy of sub-hypothesis tests (Hogg 1961)

- Let Ω denote the total parameter space and Ω^* a subspace of $\Omega.$
- It is desired to test $H_0': \theta \in \Omega^*$ against $H_1': \theta \in \Omega \Omega^*$.
- Suppose there are certain intermediate hypotheses. Let Ω_i be a subset of Ω_{i-1} , $i = 1, \ldots, t-1$, such that

 $\Omega = \Omega_0 \supset \Omega_1 \supset \ldots \supset \Omega_{t-1} = \Omega^*$

where each Ω_i corresponds to an intermediate hypothesis

• Testing H'_0 against H'_1 can be carried out by iteratively testing the following hypotheses:

$$H_0^i: \theta \in \Omega_i \text{ versus } H_1^i: \theta \in \Omega_{i-1} - \Omega_i,$$

$$i=1,\ldots,t-1$$

Multiple Change-Points (4)

Introduction

Change-Point Analysis

- One changepoint
- Multiple Changepoints

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

A hierarchy of sub-hypothesis tests (cont'd)

• To test H_0' against H_1' , we first test

 $H_0^1: \theta \in \Omega_1$ against $H_1^1: \theta \in \Omega_0 - \Omega_1$

• If H_0^1 is accepted, we then test

 $H_0^2: heta \in \Omega_2$ against $H_1^2: heta \in \Omega_1 - \Omega_2$

• In general, if H_0^{i-1} is accepted, we continue to test

 $H_0^i: \theta \in \Omega_i$ against $H_1^i: \theta \in \Omega_{i-1} - \Omega_i$

- H_0' is rejected if any one of H_0^1, \ldots, H_0^{t-1} is rejected
- H_0' is accepted if and only if all of H_0^1, \ldots, H_0^{t-1} are accepted

Multiple Testing in Change-Point Analysis (1)

Introduction

Change-Point Analysis

Multiple Testing

- Šidák inequality
- Closure principle
- Proposed method

Two-Sequence Change-Point Problem

Example

- "If you torture the data long enough, it will confess anything you want" – Nobel Laureate Ronald Coase
- Generalized likelihood ratio (GLR) test
 - $\circ~$ Let $\lambda_i=L(\hat{\Omega}_i)/L(\hat{\Omega}_{i-1})$ be the likelihood ratio for testing H_0^i against $H_1^i,~i=1,\ldots,t-1$
 - $\circ~$ The GLR for H_0^\prime against H_1^\prime is given by

$$\lambda = \frac{L(\hat{\Omega}_{t-1})}{L(\hat{\Omega}_0)} = \prod_{i=1}^{t-1} \frac{L(\hat{\Omega}_i)}{L(\hat{\Omega}_{i-1})} = \prod_{i=1}^{t-1} \lambda_i$$
(4)

- $\circ~$ The λ_i 's are mutually stochastically independent test statistics
- Significance level for each test $\alpha_i = 1 (1 \alpha)^{1/(t-1)}$, where α is the family-wise type I error rate

Multiple Testing in Change-Point Analysis (2)

Introduction

Change-Point Analysis

Multiple Testing

- Šidák inequality
- Closure principle
- Proposed method

Two-Sequence Change-Point Problem

Example

Summary

Closure principle

• Suppose T = 4, then there exist at most m = 3 change-points. Reformulation of the H_i 's

$$H_0: \{\mu_1 = \mu_2 = \mu_3 = \mu_4\}$$

$$H_1: \{\mu_1 = \mu_2 = \mu_3\}, \{\mu_2 = \mu_3 = \mu_4\},$$

$$\{\mu_1 = \mu_2\} \cap \{\mu_3 = \mu_4\}$$

$$H_2: \{\mu_1 = \mu_2\}, \{\mu_2 = \mu_3\}, \{\mu_3 = \mu_4\}$$

$$H_3: \{\mu_1\}, \{\mu_2\}, \{\mu_3\}, \{\mu_4\}$$

- This forms the closure of the family by taking all possible intersections
- The closed family resembles the one that is formed for all pair-wise comparisons, but much smaller; it consists of hypotheses of homogeneity of successive means and their intersections

Multiple Testing in Change-Point Analysis (3)

Introduction

Change-Point Analysis

Multiple Testing

- Šidák inequality
- Closure principle
- Proposed method

Two-Sequence Change-Point Problem

Example

Summary

Closed test procedure for dose-response (Marcus, et al, 1976; Begun and Gabriel, 1981; Rom, et al, 1994) – Let k denote the cardinality of a subset homogeneity hypothesis H_K

- Reject a subset homogeneity hypothesis H_K at level $\alpha_k = \alpha k/t$
- Retain H_K at level α
- Otherwise, if H_K is rejected at level α but not at level α_k , then H_K is rejected if every hypothesis H_R that concerns means in the complement of K is rejected at level α_r

Multiple Testing in Change-Point Analysis (4)

Introduction

Change-Point Analysis

Multiple Testing

- Šidák inequality
- Closure principle
- Proposed method

Two-Sequence Change-Point Problem

Example

Summary

Proposed modification of the above closed test procedure

- Reject H_0^i
 - $\circ~$ If Ω_i is not contained in any accepted set, and
 - $\circ~$ If H_0^i is rejected at level $\alpha_i=1-(1-\alpha)^{(t-1-i)/(t-1)}$
- Retain H_0^i
 - $\circ~$ If Ω_i is contained in another accepted set, or
 - $\circ~$ If H^i_0 is not rejected at level $\alpha_i=1-(1-\alpha)^{(t-1-i)/(t-1)}$

Two-Sequence Change-Point Problem

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

Summary

- Suppose that there are two independent sequences of random processes X_{i1} and X_{i2} , with $X_{ij} \sim f(\mu_{ij})$, i = 1, ..., T and j = 1, 2
- The question of interest is whether there are an abrupt change in the ratios of the two random variables across the time period
- Let $\gamma_i = \mu_{i1}/\mu_{i2}$, i = 1, ..., T. Then this is equivalent to simultaneously testing the null hypotheses

$$H_0:\gamma_1=\ldots=\gamma_T$$

against H_1 : there is at least one change point

An Example (1)

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

• Example

Summary

Pharmacovigilance and Post-Marketing Safety Surveillance

- An integrated part of biopharmaceuticcal development
- Activities involve in detection, assessment, understanding and prevention of adverse effects and any drug-related problems
- Pharmacovigilance plan (PvP)
 - As part of Marketing Authorization Application, the PvP must be prepared in compliance with regulatory request on potential safety impact of product modification
 - The PvP describes routine pharmacovigilance practice, as well as special action plan including Post-marketing Safety Surveillance Analysis (PSSA)
 - The PSSA will evaluate all potential safety signals, with special attention to proportional change of a particular adverse event (system) over time

An Example (2)

Introduction

Change-Point Analysis	
-----------------------	--

Multiple Testing

Two-Sequence Change-Point Problem

Example

• Example

Summary

PSSA

- Uses spontaneous reporting databases (AERS, VAERS, company's spontaneous reporting databases, etc.) and other epidemiological studies
- Data mining tools Empirical Bayes, neural network, etc.
- Proportional change over time useful to detect the impact of drug modification on the reporting of a particular (body system) adverse experience. For example,
 - Name change
 - Combination of two or more independent vaccines
 - \circ New technology \Rightarrow manufacturing process change

0 • • •

An Example (3)

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

• Example

Summary

Time Interval (Quarter)

An Example (4)

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

Example

Summary

Estimates of the number of change-points:

- All computations are carried out using compiled R functions and $\mathsf{SAS}^{\textcircled{R}}$ macros
- No multiplicity adjustment
 - $\circ~$ Each tested at $\alpha=0.05$
 - 4 change-points: 3, 4, 9, and 17
- Šidák inequality
 - Each tested at $\alpha^* = 1 (1 0.05)^{1/19} = 0.0027$
 - 1 change-point: 17
- Proposed method
 - $\circ~$ Each λ_i is tested at $0.05\times(19-i)/19$
 - 2 change-points: 3 and 17

Summary

Introduction

Change-Point Analysis

Multiple Testing

Two-Sequence Change-Point Problem

Example

- Exact method for computing rejection probabilities
- Simulations
- Constant rate within interval
- multivariate change-point problem
- Sequential or online change-point problem
- Continuous-time estimate of change-point
- Bayesian attempt
- Potential biases in post-marketing spontaneous data reporting

