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Introduction : Multiple testing and FDR

Multiple testing
— Test simultaneously a large number m of hypotheses.
— mg = mg/m of them are true, but 7 is unknown.

Goal :

Build a decision rule that make as 'few mistakes' as possible.

False Discovery Rate (Benjamini-Hochberg 95)

FP
FDR — ]E [? ]J{R>O}] ,

F P: number of falsely rejected hypotheses (False Positives)
where L :
R : number of Rejections
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Introduction: FDR estimation

Benjamini-Hochberg procedure  (Decision rule)
— Py, ..., Puy): ordered p-values,
— Reject hypotheses H(;), 1 <i <k, where

k = max{i/ Py <ida/mj.

Theorem (BH 95, Storey et al. 04) Applying the BH-procedure under indepen-
dence assumption,

Va € (0, 1], FDR = mya < a.

Fact:

Finding accurate conservative 7y provides accurate upper-bound of the FFDR.
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I Density estimation

Main assumptions

1. Independence,

2. Mixture model of density: g = mg Ujg 1) + (1 — 7o) f, where f is unknown,
3. It exists [A*, u*] C ]0, 1] such that for any P; € [\*, u*], P; ~U(0,1).

P-value density (g) Histogram of p-values

a 0.2 0.4 oG (R=] 1
* w
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I Density estimation

Histograms For any partition of [0, 1] in D intervals I, of length wy = ||

D D .
. mp, i/ Pi € Ix}
w p— ]J — ]J .
-y, (- S HLECH,,
Minimization of the L?-risk G : collection of all histograms.
" = argmin {E, [[lg —glls] —llgl} ~ (dependsong).
“r(@)

Goal: Find an estimator of R: E, and then g such that

AN
~

g = argmin R(9).
geg
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I Cross-validation

Leave-p-out cross-validation (LPO)

— Cross-validation : a widespread and reliable method to estimate R.

— Usually leave-one-out (LOO) and V-fold are computationally intensive :
at each step, you have to compute an estimator and then to assess its
performance on remaining data.

— LPO is based on the same idea as LOO, but with p data instead of 1.

In our case: R
— We obtain a closed formula for the LPO risk estimator : R, for any
pe [I,m—-1].

— This formula is computationally efficient: we do not have to compute any
estimator at each step (complexity of the same order as that for reading

the data O(m)).
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I Cross-validation

LPO risk estimator Vp € [1,m — 1], and any partition w,

Bias of the LPO risk estimator With VEk, ap = Pr[P; € I;],

873 1—0%).

Mw

By(w) =B, |Ry(w) = R(3.)] = —
k::l

Remarks :
— Similar expression for the variance. R
— Plug-in estimators of bias B, and variance V,, are obtained replacing oy, by
my/m in expressions.
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I Cross-validation

Choice of the parameter p

Choose p € |[1,m — 1] that realizes the best "bias-variance" trade-off ac-
cording to the M SE criterion (MSE = B 4+ V,,).

Define for any partition w

plw) = arg eﬁff_q{m(p’”)}’

= arg n%in {[B\p(w)]z + ‘A/p(w)} .

Final L?—risk estimator:

Vw,  R(w) = Rp)w).
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I 7y estimation

Collection of histograms

For each N € { Nmins - - - » Vmax }

consider the regular partition in NV intervals.

Forevery 1 <k </{ <N,
define A = k/N and = ¢/N.

The resulting histogram consists in :
(7) kK regular columns from 0 to A of width 1/N
(77) a wide large central column from A to p,

(74) NN — £ regular columns of width 1/N.

1] 0.1 : o3 04 05 0B 07 |08 08 1
A p

G : collection of all these histograms.
Card(G) = Nuyax (N2, — 1)/6,
( Nmin = 1).

To each partition w is associated
(A, i) standing for edges of the
widest central column.
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I 7y estimation

Estimation procedure of 7 -
Step 1: Vw, p(w) = arg min, MSE(p,w),

AN

Step 2: W = argmin, Rp,)(w),

X 7),

def t{i/ Pi€[Mi]} |
m(f—X)

Step 3: W —

/N

Step 4: 7y = 7o(\, i)

Theoretical result

For a given fixed collection of histograms, under independence, we obtain that
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IV Simulations: compact support density f

Storey (2002) with A = 0.5
Assumption : For large enough A, each p-value larger than A follows (0, 1).

VA€, 1, R(\) = HAESE (SAM: A =0.5)

Simulation design:
- f(t) = s/X* (1 —t/X*)*"1 Do aq(t), (density of Hy p-values)

— m = 1000.
7o = 0.9 A =0.2, s=4 A*=04, s=6
Method Bias Variance MSE Bias Variance MSE
LPO 0.0039 | 62510 % | 6.41 10 * || 0.0056 | 7.69 10~* | 8.00 10 *
LOO 0.0046 | 53010°* | 55210°* | 0.0061 | 729107* | 7.66 104
70(0.5) || -0.0015 | 9.92107* | 9.94 10~ * || 0.0024 | 95210°* | 9.58 10~ *

Conclusions:

— LPO less biased than LOO. MSE of 7y(0.5) larger than that of LPO.
— MSE of LPO larger than that of LOO due to the p estimation,
— Even if assumption satisfied, there may be a potential gain in choosing .
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IV Simulations: density f on [0, 1]

General case with A\*=1

Simulation design:
- f(t) = s(1 —t)*71, t €0,1], with s € {5,10, 25,50},
— m = 1000,
— Proportion of true-null hypotheses: 0.5, 0.7, 0.9, 0.95.

Comparison of different methods:

1. LPO : proposed estimator of 7y based on leave-p-out,

2. LOO: LPO with p =1,

3. Bootstrap : Storey (2002), based on bootstrap and M SFE,
4. Smoother : Storey et al.(2003), relying on spline adjustment,
5

- Twilight : Scheid et al.(2004), based on both minimization of a penalized
criterion and bootstrap.
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MSE

MSE

[V Simulations: density on [0, 1]
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IV Simulations: U-shape density

U-shape density of real data

Histogram of pooled p-values (Pounds et al.(2005))

8
Pounds et al.(2005) observed 14
a U-shape on real data, for 12
Affymetrix present-absent o
p-values. .
It appears in one-sided tests "
when non tested alternative is true. "

a 0.2 0.4 0.6 0.z 1

Simulation design: (Test of u = 0 against p > 0.)

— m = 1000,

— Data simulated ~ o N(0, 0.75) + 25" N (1, 0.75) + 1570 N (—p, 0.75),
- e {1,1.5}.
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IV Simulations: U-shape density

Comparison in the U-shape case

MSE :

0 0.25 0.5 0.7 0.8 0.9

LPO 0.0068 | 0.0057 | 0.0047 | 0.0044 | 0.0024
LOO 0.0071 | 0.0078 | 0.0066 | 0.0057 | 0.0028

Smoother 0.56 0.25 0.09 0.04 0.0098
Bootstrap 0.187 0.084 0.03 0.01 0.0032
Twilight 0.536 0.226 0.08 0.03 0.0066

Conclusions:
— LPO has lower MSE than LOO,
— The gap between LPO/LOQO and other methods decreases as my grows,
but still in favor of LPO/LOO.
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Discussion

Conclusion :
— Our estimator of g relies on a LPO risk estimator,
— It is not computation-time consuming,

— This estimator seems to outperform other tested methods in the general
framework,

— LPO estimator is still reliable even in the case of U-shape density, where
other methods highly overestimate 7.

Thank youl
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