A leave-p-out based estimation of the proportion of null hypotheses in multiple testing problems

Alain Celisse & Stéphane Robin

UMR 518 AgroParisTech/INRA MIA SSB Workgroup : Statistics for Systems Biology

Alain Celisse / AgroParisTech : MCP-Vienna 2007

Multiple testing

- Test simultaneously a large number m of hypotheses.

- $\pi_0 = m_0/m$ of them are true, but π_0 is unknown.

Goal :

Build a decision rule that make as 'few mistakes' as possible.

False Discovery Rate (Benjamini-Hochberg 95)

$$FDR = \mathbb{E}\left[\frac{FP}{R} \mathbb{1}_{\{R>0\}}\right],$$

where $\begin{cases} FP: \text{ number of falsely rejected hypotheses (False Positives)} \\ R: \text{ number of Rejections} \end{cases}$

Benjamini-Hochberg procedure (Decision rule)

- $P_{(1)}, \ldots, P_{(m)}$: ordered p-values,
- Reject hypotheses $H_{(i)}, \ 1 \leq i \leq \hat{k}$, where

$$\widehat{k} = \max\{i/P_{(i)} \le i\alpha/m\}.$$

Theorem (BH 95, Storey et al. 04) Applying the BH-procedure under independence assumption,

$$\forall \alpha \in (0,1], \qquad FDR = \pi_0 \alpha \le \alpha.$$

Fact :

Finding accurate conservative $\widehat{\pi}_0$ provides accurate upper-bound of the FDR.

Main assumptions

- 1. Independence,
- 2. Mixture model of density: $g = \pi_0 \ \mathbbm{1}_{[0,1]} + (1 \pi_0)f$, where f is unknown,
- 3. It exists $[\lambda^*, \mu^*] \subset]0, 1]$ such that for any $P_i \in [\lambda^*, \mu^*], P_i \sim \mathcal{U}(0, 1).$

P-value density (g)

Histogram of p-values

Alain Celisse / MCP-Vienna: 10/07/07

3

Histograms For any partition of [0,1] in D intervals I_k of length $\omega_k = |I_k|$:

$$\widehat{g}_{\omega} = \sum_{k=1}^{D} \frac{m_k}{m \,\omega_k} \, \mathbb{1}_{I_k} \quad \left(= \sum_{k=1}^{D} \frac{\sharp\{i/P_i \in I_k\}}{m \,\omega_k} \, \mathbb{1}_{I_k} \right)$$

Minimization of the L^2 -risk \mathcal{G} : collection of all histograms.

$$g^* = \arg\min_{\widehat{g} \in \mathcal{G}} \underbrace{\left\{ \mathbb{E}_g \left[||g - \widehat{g}||_2^2 \right] - ||g||_2^2 \right\}}_{\substack{def \\ = R(\widehat{g})}} \quad (\text{depends on } g).$$

Goal : Find an estimator of $R : \widehat{R}$, and then \widetilde{g} such that

$$\widetilde{g} = \arg\min_{\widehat{g}\in\mathcal{G}} \widehat{R}(\widehat{g}).$$

Leave-p-out cross-validation (LPO)

- Cross-validation : a widespread and reliable method to estimate R.
- Usually leave-one-out (LOO) and V-fold are computationally intensive : at each step, you have to compute an estimator and then to assess its performance on remaining data.
- LPO is based on the same idea as LOO, but with p data instead of 1.

In our case :

- We obtain a closed formula for the LPO risk estimator : \widehat{R}_p for any $p\in \ [\![1,m-1]\!]$.
- This formula is computationally efficient : we do not have to compute any estimator at each step (complexity of the same order as that for reading the data $\mathcal{O}(m)$).

5

 $\mathsf{LPO} \text{ risk estimator } \forall p \in \ [\![1, m-1]\!], \text{ and any partition } \omega,$

$$\widehat{R}_{p}(\omega) = \frac{2m-p}{(m-1)(m-p)} \sum_{k=1}^{D} \frac{m_{k}}{m\omega_{k}} - \frac{m(m-p+1)}{(m-1)(m-p)} \sum_{k=1}^{D} \frac{1}{\omega_{k}} \left(\frac{m_{k}}{m}\right)^{2} \cdot$$

Bias of the LPO risk estimator With $\forall k, \quad \alpha_k = \Pr[P_i \in I_k],$

$$B_p(\omega) = \mathbb{E}_g \left[\widehat{R}_p(\omega) - R\left(\widehat{g}_\omega\right) \right] = \frac{p}{m(m-p)} \sum_{k=1}^D \frac{\alpha_k (1-\alpha_k)}{\omega_k} \cdot$$

Remarks :

- Similar expression for the variance.
- Plug-in estimators of bias \widehat{B}_p and variance \widehat{V}_p are obtained replacing α_k by m_k/m in expressions.

6

Choice of the parameter p

Choose $\hat{p} \in [\![1, m - 1]\!]$ that realizes the best "bias-variance" trade-off according to the MSE criterion ($MSE = B_p^2 + V_p$).

Define for any partition $\boldsymbol{\omega}$

$$\widehat{p}(\omega) = \arg \min_{p \in [[1,m-1]]} \left\{ \widehat{MSE}(p,\omega) \right\},$$
$$= \arg \min_{p} \left\{ [\widehat{B}_{p}(\omega)]^{2} + \widehat{V}_{p}(\omega) \right\}.$$

Final L^2 -risk estimator:

$$\forall \omega, \qquad \widehat{R}(\omega) = \widehat{R}_{\widehat{p}(\omega)}(\omega).$$

Collection of histograms

For each $N \in \{N_{\min}, \ldots, N_{\max}\}$, consider the regular partition in N intervals.

For every $1 \leq k < \ell \leq N$, define $\lambda = k/N$ and $\mu = \ell/N$.

The resulting histogram consists in :

(i) k regular columns from 0 to λ of width 1/N

- (ii) a wide large central column from λ to μ ,
- (*iii*) $N \ell$ regular columns of width 1/N.

 \mathcal{G} : collection of all these histograms. $\operatorname{Card}(\mathcal{G}) = N_{\max} (N_{\max}^2 - 1)/6,$ ($N_{\min} = 1$).

To each partition ω is associated (λ, μ) standing for edges of the widest central column.

Estimation procedure of π_0

Step 1:
$$\forall \omega$$
, $\widehat{p}(\omega) = \arg \min_{p} \widehat{MSE}(p, \omega)$,
Step 2: $\widehat{\omega} = \arg \min_{\omega} \widehat{R}_{\widehat{p}(\omega)}(\omega)$,
Step 3: $\widehat{\omega} \longrightarrow (\widehat{\lambda}, \widehat{\mu})$,
Step 4: $\widehat{\pi}_{0} = \widehat{\pi}_{0}(\widehat{\lambda}, \widehat{\mu}) \stackrel{def}{=} \frac{\sharp\{i/P_{i} \in [\widehat{\lambda}, \widehat{\mu}]\}}{m(\widehat{\mu} - \widehat{\lambda})}$.

Theoretical result

For a given fixed collection of histograms, under independence, we obtain that

$$\widehat{\pi}_0 \quad \xrightarrow{P} \quad \pi_0.$$

9

Storey (2002) with $\lambda=0.5$

Assumption : For large enough λ , each p-value larger than λ follows $\mathcal{U}(0, 1)$. $\forall \lambda \in]0, 1[, \qquad \widehat{\pi}_0(\lambda) = \frac{\sharp\{i/P_i \ge \lambda\}}{m(1-\lambda)} \quad (SAM: \lambda = 0.5).$

Simulation design :

- $f(t) = s/\lambda^* (1 - t/\lambda^*)^{s-1} \mathbb{1}_{[0,\lambda^*]}(t)$, (density of H_1 p-values) - m = 1000.

$\pi_0 = 0.9$	$\lambda^* = 0.2, \ s = 4$			$\lambda^* = 0.4, \ s = 6$		
Method	Bias	Variance	MSE	Bias	Variance	MSE
LPO	0.0039	$6.25 \ 10^{-4}$	6.41 10^{-4}	0.0056	7.69 10^{-4}	8.00 10^{-4}
LOO	0.0046	5.30 10^{-4}	5.52 10^{-4}	0.0061	7.29 10^{-4}	7.66 10^{-4}
$\widehat{\pi}_0(0.5)$	-0.0015	9.92 10^{-4}	9.94 10^{-4}	0.0024	9.52 10^{-4}	9.58 10^{-4}

Conclusions :

- LPO less biased than LOO. MSE of $\widehat{\pi}_0(0.5)$ larger than that of LPO.
- MSE of LPO larger than that of LOO due to the \widehat{p} estimation,
- Even if assumption satisfied, there may be a potential gain in choosing λ .

General case with $\lambda^* = 1$

Simulation design :

- $f(t) = s(1-t)^{s-1}, \ t \in [0,1], \text{ with } s \in \{5, 10, 25, 50\},$
- -m = 1000,
- Proportion of true-null hypotheses: 0.5, 0.7, 0.9, 0.95.

Comparison of different methods :

- 1. LPO : proposed estimator of π_0 based on leave-p-out,
- 2. LOO: LPO with p = 1,
- 3. Bootstrap: Storey (2002), based on bootstrap and MSE,
- 4. *Smoother*: Storey et al.(2003), relying on spline adjustment,
- 5. Twilight: Scheid et al.(2004), based on both minimization of a penalized criterion and bootstrap.

IV Simulations: density on [0,1]

Alain Celisse / MCP-Vienna: 10/07/07

U-shape density of real data

Pounds et al.(2005) observed a U-shape on real data, for Affymetrix present-absent p-values.

It appears in one-sided tests when non tested alternative is true.

Histogram of pooled p-values (Pounds et al.(2005))

Simulation design: (Test of $\mu = 0$ against $\mu > 0$.)

- -m = 1000,
- Data simulated ~ $\pi_0 \mathcal{N}(0, 0.75) + \frac{1-\pi_0}{2} \mathcal{N}(\mu, 0.75) + \frac{1-\pi_0}{2} \mathcal{N}(-\mu, 0.75),$ - $\mu \in \{1, 1.5\}.$

Comparison in the U-shape case **MSE**:

π_0	0.25	0.5	0.7	0.8	0.9
LPO	0.0068	0.0057	0.0047	0.0044	0.0024
LOO	0.0071	0.0078	0.0066	0.0057	0.0028
Smoother	0.56	0.25	0.09	0.04	0.0098
Bootstrap	0.187	0.084	0.03	0.01	0.0032
Twilight	0.536	0.226	0.08	0.03	0.0066

Conclusions :

- LPO has lower MSE than LOO,
- The gap between LPO/LOO and other methods decreases as π_0 grows, but still in favor of LPO/LOO.

14

Conclusion :

- Our estimator of π_0 relies on a LPO risk estimator,
- It is not computation-time consuming,
- This estimator seems to outperform other tested methods in the general framework,
- LPO estimator is still reliable even in the case of U-shape density, where other methods highly overestimate π_0 .

Thank you!