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Introduction : Multiple testing and FDR

Multiple testing
� Test simultaneously a large number m of hypotheses.
� π0 = m0/m of them are true, but π0 is unknown.

Goal :
Build a decision rule that make as 'few mistakes' as possible.

False Discovery Rate (Benjamini-Hochberg 95)

FDR = E
[
FP

R
1I{R>0}

]
,

where
{

FP : number of falsely rejected hypotheses (False Positives)
R : number of Rejections .
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Introduction : FDR estimation

Benjamini-Hochberg procedure (Decision rule)
� P(1), . . . , P(m) : ordered p-values,
� Reject hypotheses H(i), 1 ≤ i ≤ k̂, where

k̂ = max{ i/ P(i) ≤ iα/m}.

Theorem (BH 95, Storey et al. 04) Applying the BH-procedure under indepen-
dence assumption,

∀α ∈ (0, 1], FDR = π0α ≤ α.

Fact :
Finding accurate conservative π̂0 provides accurate upper-bound of the FDR.
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I Density estimation

Main assumptions
1. Independence,
2. Mixture model of density : g = π0 1I[0,1] + (1− π0)f , where f is unknown,
3. It exists [λ∗, µ∗] ⊂ ]0, 1] such that for any Pi ∈ [λ∗, µ∗], Pi ∼ U(0, 1).

P-value density (g) Histogram of p-values
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I Density estimation

Histograms For any partition of [0, 1] in D intervals Ik of length ωk = |Ik| :

ĝω =
D∑

k=1

mk

m ωk
1IIk

(
=

D∑
k=1

]{i/ Pi ∈ Ik}
m ωk

1IIk

)
.

Minimization of the L2-risk G : collection of all histograms.

g∗ = arg min
ĝ∈G

{
Eg

[
||g − ĝ||22

]
− ||g||22

}︸ ︷︷ ︸
def
= R(ĝ)

(depends on g).

Goal : Find an estimator of R : R̂, and then g̃ such that

g̃ = arg min
ĝ∈G

R̂(ĝ).
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II Cross-validation

Leave-p-out cross-validation (LPO)

� Cross-validation : a widespread and reliable method to estimate R.
� Usually leave-one-out (LOO) and V-fold are computationally intensive :
at each step, you have to compute an estimator and then to assess its
performance on remaining data.

� LPO is based on the same idea as LOO, but with p data instead of 1.

In our case :
� We obtain a closed formula for the LPO risk estimator : R̂p for any

p ∈ [[ 1,m− 1 ]] .

� This formula is computationally e�cient : we do not have to compute any
estimator at each step (complexity of the same order as that for reading
the data O(m)).
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II Cross-validation

LPO risk estimator ∀p ∈ [[ 1,m− 1 ]] , and any partition ω,

R̂p(ω) =
2m− p

(m− 1)(m− p)

D∑
k=1

mk

m ωk
− m(m− p + 1)

(m− 1)(m− p)

D∑
k=1

1
ωk

(mk

m

)2

·

Bias of the LPO risk estimator With ∀k, αk = Pr[Pi ∈ Ik],

Bp(ω) = Eg

[
R̂p(ω)−R (ĝω)

]
=

p

m(m− p)

D∑
k=1

αk(1− αk)
ωk

·

Remarks :
� Similar expression for the variance.
� Plug-in estimators of bias B̂p and variance V̂p are obtained replacing αk by

mk/m in expressions.
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II Cross-validation

Choice of the parameter p

Choose p̂ ∈ [[ 1,m − 1 ]] that realizes the best "bias-variance" trade-o� ac-
cording to the MSE criterion (MSE = B2

p + Vp).

De�ne for any partition ω

p̂(ω) = arg min
p∈ [[ 1,m−1 ]]

{
M̂SE(p, ω)

}
,

= arg min
p

{
[B̂p(ω)]2 + V̂p(ω)

}
.

Final L2−risk estimator :

∀ω, R̂(ω) = R̂p̂(ω)(ω).
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III π0 estimation

Collection of histograms

For each N ∈ {Nmin, . . . , Nmax},
consider the regular partition in N intervals.

For every 1 ≤ k < ` ≤ N,
de�ne λ = k/N and µ = `/N.

The resulting histogram consists in :
(i) k regular columns from 0 to λ of width 1/N ,
(ii) a wide large central column from λ to µ,
(iii) N − ` regular columns of width 1/N.

G : collection of all these histograms.
Card(G) = Nmax (N2

max − 1)/6 ,

( Nmin = 1).

To each partition ω is associated
(λ, µ) standing for edges of the
widest central column.
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III π0 estimation

Estimation procedure of π0

Step 1 : ∀ω, p̂(ω) = arg minp M̂SE(p, ω),

Step 2 : ω̂ = arg minω R̂p̂(ω)(ω),

Step 3 : ω̂ −→ (λ̂, µ̂),

Step 4 : π̂0 = π̂0(λ̂, µ̂)
def
=

]{i/ Pi∈[λ̂,µ̂]}
m(µ̂−λ̂)

·

Theoretical result

For a given �xed collection of histograms, under independence, we obtain that

π̂0
P−−−−−→

m→+∞
π0.
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IV Simulations : compact support density f

Storey (2002) with λ = 0.5
Assumption : For large enough λ, each p-value larger than λ follows U(0, 1).

∀λ ∈]0, 1[, π̂0(λ) = ]{i/ Pi≥λ}
m(1−λ) (SAM : λ = 0.5).

Simulation design :
� f(t) = s/λ∗(1− t/λ∗)s−1 1I[0,λ∗](t), (density of H1 p-values)
� m = 1000.

π0 = 0.9 λ∗ = 0.2, s = 4 λ∗ = 0.4, s = 6

Method Bias Variance MSE Bias Variance MSE
LPO 0.0039 6.25 10−4 6.41 10−4 0.0056 7.69 10−4 8.00 10−4

LOO 0.0046 5.30 10−4 5.52 10−4 0.0061 7.29 10−4 7.66 10−4

π̂0(0.5) -0.0015 9.92 10−4 9.94 10−4 0.0024 9.52 10−4 9.58 10−4

Conclusions :
� LPO less biased than LOO. MSE of π̂0(0.5) larger than that of LPO.
� MSE of LPO larger than that of LOO due to the p̂ estimation,
� Even if assumption satis�ed, there may be a potential gain in choosing λ.
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IV Simulations : density f on [0, 1]

General case with λ∗=1
Simulation design :

� f(t) = s(1− t)s−1, t ∈ [0, 1], with s ∈ {5, 10, 25, 50},
� m = 1000,
� Proportion of true-null hypotheses : 0.5, 0.7, 0.9, 0.95 .

Comparison of di�erent methods :
1. LPO : proposed estimator of π0 based on leave-p-out,
2. LOO : LPO with p = 1,
3. Bootstrap : Storey (2002), based on bootstrap and MSE,
4. Smoother : Storey et al.(2003), relying on spline adjustment,
5. Twilight : Scheid et al.(2004), based on both minimization of a penalized

criterion and bootstrap.
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IV Simulations : density on [0, 1]
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IV Simulations : U-shape density

U-shape density of real data

Pounds et al.(2005) observed
a U-shape on real data, for
A�ymetrix present-absent
p-values.

It appears in one-sided tests
when non tested alternative is true.

Histogram of pooled p-values (Pounds et al.(2005))

Simulation design : (Test of µ = 0 against µ > 0.)
� m = 1000,
� Data simulated ∼ π0N (0, 0.75)+ 1−π0

2 N (µ, 0.75)+ 1−π0
2 N (−µ, 0.75),

� µ ∈ {1, 1.5}.
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IV Simulations : U-shape density

Comparison in the U-shape case
MSE :

π0 0.25 0.5 0.7 0.8 0.9
LPO 0.0068 0.0057 0.0047 0.0044 0.0024
LOO 0.0071 0.0078 0.0066 0.0057 0.0028

Smoother 0.56 0.25 0.09 0.04 0.0098
Bootstrap 0.187 0.084 0.03 0.01 0.0032
Twilight 0.536 0.226 0.08 0.03 0.0066

Conclusions :
� LPO has lower MSE than LOO,
� The gap between LPO/LOO and other methods decreases as π0 grows,
but still in favor of LPO/LOO.
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Discussion

Conclusion :

� Our estimator of π0 relies on a LPO risk estimator,

� It is not computation-time consuming,

� This estimator seems to outperform other tested methods in the general
framework,

� LPO estimator is still reliable even in the case of U-shape density, where
other methods highly overestimate π0.

Thank you!
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