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Several statistical computer packages contain stepwise subroutines
for selecting the best subset of regressors and provide a p-value
based on the F-to-enter and computed from tables of the
F-distribution.

This distribution is correct only if all previously entered regressors
have not been data-steered (see Grechanovsky and Pinsker (1995),
Austin and Tu (2004)).

Resampling methods or bootstrap technique may be a solution (see
Harshman and Lundy (2006) and Freedman et al. (1992)).

Brombin, Finos, Salmaso Adjusting stepwise p-values in generalized linear models



Introduction
A nonparametric permutation approach

Simulation studies
Conclusions

Outline
Stepwise regression techniques
What happens in reality?

Type I error is out of control . . .

What’s the probability to find a non-real significant model after stepwise
regression?

We generate standard normal distributed independent covariates
that are unrelated and independent to the outcome.

First simulation study: m=10 covariates, n=20 cases, MCM=1000.

Second simulation study: m=20 covariates, n=30 cases,
MCM=1000.

nominal α level 0.01 0.05 0.10 0.20 0.30 0.50
1◦ simulation 0.187 0.521 0.733 0.892 0.935 0.939
2◦ simulation 0.530 0.840 0.938 0.983 0.996 0.998

For details see the algorithm described afterwards.
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General idea

The multiplicity arises because of the multitude of models explored
by the stepwise method. With m covariates, you can obtain
M = 2m − 1 models.

The p-values tends to be (very) ”small” also when Y is NOT
associated with any of the X.

More covariates and more exaustive research you do, smaller
p-values you get . . .

A Bonferroni correction p ×M is valid but the conservativeness of
this solution is often unacceptable for both theoretical and practical
purposes. In fact

the selected p-value is not always the minimum of all possible
models, because the research of stepwise methods is not exaustive,
M can be very high,
the p-values of different models are dependent when part of variables
are in common.
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Algorithm

This simple algorithm, while controlling the α-level, ensures the
unbiasedness and the consistency of the estimated p-values of the
selected model (Finos and Salmaso, 2006).

1 Perform a standard stepwise regression (backward or forward) in a
lm or glm (e.g. logistic, Poisson, Cox models).

2 Extract the p-value associated to F statistic (test on residual
deviance for glm). This p-value is called the observed p-value.

3 Consider a permutation of the response variable y and repeat steps
1) and 2).

4 Carry out B (e.g. 1000 or 5000) independent repetitions of the
previous step.

5 The corrected p-value is exactly the fraction of permutation p-values
that are less or equal to the observed one.
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Test’s properties (1)

Define

t(Y,X) = t(Y), the p-value of the model selected by the stepwise
procedure for Y ∼ g(X) (t is a test statistic),

Y/Y, the permutation sample space or the orbit of Y that contains
n! elements.

The test is invariant with respect to its measure and α-size because
(Pesarin F., 2001)

f (t(Y′)) = f (t(Y′′)), ∀ {Y′,Y′′} ⊂ Y/Y.

i.e. The process has the same distribution for any random permutation of
observed Y.

Remark: Model selection can just estimate which model is best, based
on the single data set; the observed data are conceptualized as random
variables and their values would be different if another independent
sample were available (see Burnham (2002)).
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Test’s properties (2)

The test is unbiased because

F (t(Y)) > F (t(Y′)), Y′ ∈ Y/Y

when the vector of observed Y depends on X.

i.e. Under H1 the distribution of p-value of selected model is
stochastically larger for Y than for any random permutation.

If the step-wise procedure is consistent (e.g. forward selection considers
all the univariate model and backward considers the full model, both are
consistent), the test is consistent because

t(Y) → 0 as n →∞.

i.e. The distribution of p-value of selected model tends to be 0 constant,
whereas the distribution of p-value of selected model for any pemutation
of Y does not.
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Outlines from literature

Copas and Long (1991) propose a correction for forward selection in
multiple linear model for orthogonal regressors.

Grechanovsky and Pinsker (1995) generalize it to general forward
selection for linear models.

Harshman and Lundy (2006) make use of empirical approximate
approach for this correction.

All those works control the Familywise Error Rate (FWE) in a strong
sense but are restricted to linear model under forward selection.

The proposed method control the FWE in a weak sense but is valid for
any GLM and any stepwise selection method.
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Results in the first simulation study

First simulation study: m=10 covariates, n=20 cases, B=100, MCM=1000.

EDF of biased p-values EDF of corrected p-values
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Results in the second simulation study

Second simulation study: m=20 covariates, n=30 cases, B=100, MCM=1000.

EDF of biased p-values EDF of corrected p-values
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About power . . .

In the first simulation study, we have generated 5 dependent and
related to the outcome covariates out of the 10 normally distributed
covariates (5 out of the 20 in the second simulation study). The
remaining standard normal distributed covariates are generated
independent to each other and unrelated and independent to the
outcome.

First simulation study: m=10 covariates, n=30 cases, ρ = 0.4,
B=100, MCM=1000.

Second simulation study: m=20 covariates, n=30 cases, ρ = 0.4,
B=100, MCM=1000.

Third simulation study: m=20 covariates, n=30 cases, ρ = 0.6,
B=100, MCM=1000.
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Increasing the number of covariates
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Increasing the value of the correlation coefficient ρ
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The p-values of stepwise regression can be highly biased. In particular

the evaluation of glm-stepwise must be prudent, mainly when
regressors have been data-steered,

it’s possible to correct p-values in a very simple manner,

our proposal is a nonparametric permutation solution that is exact,
flexible and potentially adaptable to most different applications of
model selection,

the correction becomes more severe when many variables are
processed by the stepwise machinery.
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Open problems

Future developments concern the generalization to

stepwise canonical correlation / MANOVA,

discriminant analysis,

segmentation tree models and general selection and inference
methods,

strong control of FWE (to be continued . . . )
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R code

sim_adjSW<-function(n,m,B,MCMC,seme){

set.seed(seme)

raw_p<-rep(1,MCMC)

adj_p<-rep(1,MCMC)

ps<-as.data.frame(cbind(raw_p,adj_p))

xnam <- paste("X$V", 1:m, sep="")

fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+")))

fmlaperm <- as.formula(paste("sample(y) ~ ", paste(xnam, collapse= "+")))

for(j in 1:MCMC){

p<-rep(1,B)

y<-rnorm(n, mean=0, sd=1)

X<-(as.data.frame(matrix(rnorm(n*m, mean=0, sd=1),n,m)))

mod1<-lm(fmla)

result<-summary(step(mod1,trace = 0))

if(is.null(result$fstatistic)==FALSE){if( result$fstatistic[2]>0 & result$fstatistic[3]>0)

p[1]=pf(result$fstatistic[1],result$fstatistic[2],result$fstatistic[3],lower.tail = FALSE)}

for(i in 2:B){

print(cat("."))

y<-sample(y)

mod1<-lm(fmla)

result<-summary(step(mod1,trace = 0))

if(is.null(result$fstatistic)==FALSE){if( result$fstatistic[2]>0 & result$fstatistic[3]>0)

p[i]=pf(result$fstatistic[1],result$fstatistic[2],result$fstatistic[3],lower.tail = FALSE)}

}

ps$adj_p[j]<-(sum(p<=p[1])/B)

ps$raw_p[j]<-p[1]

print(p)

}

return(ps)

}

PS<-sim_adjSW(20,10,100,1000,17)
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