FLEXIBLE TWO-STAGE TESTING IN GENOME-WIDE ASSOCIATION STUDIES

A Scherag, H Schäfer, HH Müller

Institute of Medical Biometry & Epidemiology, Philipps-University of Marburg

5th International Conference on Multiple Comparison Procedures, 07/10/2007 Vienna

N-JeV

GEM

Overview

- example for a typical genome-wide associations study (GWAS)
- two-stage GWAS notation
- design modifications and the conditional rejection probabilities
- a new flexible procedure for GWAS
- simulation study
- discussion

Arking et al., 2006

Arking et al., 2006

two-stage GWAS - notation

- let the proportion of case:controls remain constant
- for each stage:
 - n_1 , n_2 the individuals genotyped; $n = n_1 + n_2$
 - M_1 , M_2 are marker sets genotyped (with genotyping costs t_1 , t_2)
 - α_1 , α_2 are the significance levels chosen such that the family-wise error rate in a strong sense (FWER) **is controlled at a level** α

two-stage GWAS - notation

example for a cost-optimal two-stage GWAS (e.g. Wang et al., 2006):

• $|M_1| = 500,000; t_1 = \$0.002, t_2 = \0.035

• one true disease marker:

• allele frequency=0.1; odds ratio=1.35 (mult. model)

• power = 0.9; FWER control at $\alpha = 0.05$ (one-sided) by Bonferroni method $\alpha_i = 0.05/500,000$

•
$$n_1 = 3,238;$$
 $n_2 = 7,490;$ $n = 10,728$

•
$$\alpha_1 = 0.00370;$$
 $\alpha_2 = 1.6 \times 10^{-10}$

design modifications and the conditional rejection probabilities

Cui et al., 1999; Müller & Schäfer, 2001, 2004
General condition

 $\Pr_{H_0}(\text{reject } H_0, \text{new design}|\text{interim data})$ $\leq \Pr_{H_0}(\text{reject } H_0, \text{initial design}|\text{interim data})$

These probabilities are called **conditional rejection probabilities** (CRP)

a new flexible procedure for GWAS

- plan a GWAS with a reasonable design including a sample size calculation
- for a marker i define: $CRP_i(t^{\gamma}):=Pr_i(T_{i,n} \ge t^{\gamma}| \text{ interim data})$
- for a subset of markers I of M_1 define:

 $CRP_{I}(t^{\gamma}) := \sum_{i \in I} CRP_{i}(t^{\gamma})$

a new flexible procedure for GWAS

- let M₂ be the marker set foreseen for genotyping in stage 2
- determine minimum $\omega := \operatorname{CRP}_{I}(t^{\alpha/|I|})$ for all hypotheses that include the marker set M₂ for **closed testing** (Marcus et al., 1976)
- by sorting the interim test statistics of the set $M_1 \setminus M_2$ (from minimum to maximum)
- ω is calculated for the $|M_1| |M_2|$ CRP sums with |I| as set size of the currently evaluted set

a new flexible procedure for GWAS

 design modifications must fulfill the inequality

 $\label{eq:CRP_M2} CRP_{M_2}(t^{\gamma}) \leq \omega$ in order to control the FWER for the design as a whole

simulation study

marker	optimal design by Wang et al. (2006)						flexible design	
$ M_1 (x10^3)$	α_1	$\alpha_2 (x10^{-5})$	n ₁ /n	n	FWER	power	FWER	power
1	0.091	7.200	0.257	2,504	0.051	0.887	0.048	0.887
10	0.078	0.720	0.224	2,994	0.045	0.893	0.042	0.892
30	0.070	0.240	0.209	3,292	0.050	0.886	0.048	0.886
100	0.064	0.072	0.200	3,536	0.053	0.889	0.051	0.888
500	0.056	0.015	0.187	3,894	0.050	0.890	0.045	0.889

- constant per genotype costs, case:control fraction 1
- one true disease marker:
 - allele frequency=0.2; odds ratio=1.5 (mult. model)
 - power = 0.9; $\alpha_i = 0.05 / |M1|$ (two-sided)
- 10,000 replicates

discussion

- more flexibility, e.g.:
 - arbitrary selection criteria for the M₂ marker set
 - allows sample size modification in stage 2
- control of FWER
- can be combined with cost-optimal designs

references

- Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, West K, et al. (2006). A common genetic variant in the *NOS1* regulator *NOS1AP* modulates cardiac repolarization. Nat Genet 38(6):644–651.
- Cui L, Hung HM, Wang SJ (1999). Modification of sample size in group sequential clinical trials. Biometrics 55(3):853–857.
- Müller HH, Schäfer H (2001). Adaptive group sequential designs for clinical trials: combining the advantages of adaptive and of classical group sequential approaches. Biometrics 57(3):886–891.
- Müller HH, Schäfer H (2004). A general statistical principle for changing a design any time during the course of a trial. Stat Med 23(16):2497–2508.

references

- Marcus R, Peritz E, Gabriel KR (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63(3):655–660.
- Scherag A, Schäfer H, Müller HH (*submitted*). Flexible twostage testing in genome-wide association studies more flexibility.
- Wang H, Thomas DC, Pe'er I, Stram DO (2006). Optimal two-stage genotyping designs for genome-wide association scans. Genet Epidemiol 30(4):356–368.

Thank you for your attention!