# Some Improved Tests for Multivariate One-Sided Hypotheses

August, 2005

Lange Wu

**Department of Statistics** 

University of British Columbia

Vancouver, BC, Canada

\* This is a joint work with Professor Michael Perlman at the University of Washington.

#### **One-sided tests for comparing multivariate responses**

#### Examples:

- Clinical trials with multiple endpoints. Treatment effects may be measured by both efficacy and toxicity. Treatment A is better than Treatment B if all components of its mean responses are larger (say).
- Selection and ranking problems. Find the largest element of several normal means (Gupta 1965; Hsu 1996). E.g., construct a confidence set for the index of the largest mean ≡ simultaneously test several normal mean differences (closely related to multiple comparisons with the unknown best).

# **Example I: Finding True Phylogenies**

This is a selection and ranking application. In this dataset

- There are 6 mammal species (human, harbor seal, cow, rabbit, mouse, and opossum).
- We consider p = 5 most probable phylogenies, and want to find the *true phylogeny* the hypothetical tree of the evolution history.
- Each phylogeny can be represented as a probabilistic model  $M_i$ .

# **Example I: Finding True Phylogenies**

- We assume  $Y_i \equiv$  maximized loglikelihood $(M_i)$  to be approximately normal.
- Let  $E(Y_i) = \mu_i$ , and  $\mu_{jk} = \mu_j \mu_k = E(Y_j Y_k)$ ,  $j, k = 0, 1, \dots, p$ .
- We want to construct a  $(1 \alpha) \times 100\%$  confidence set for *the true phylogeny* the one with the largest likelihood.

### **Example I: Finding True Phylogenies**

The problem is equivalent to testing

$$\begin{split} H_0^{(k)} &: \max_{j \neq k} \mu_{jk} \equiv \max_{j \neq k} (\mu_j - \mu_k) \leq 0 \\ \text{versus } H_1^{(k)} : \text{ not } H_0^{(k)}, \text{ for each } k, \quad k = 0, 1, \dots, p. \\ \text{We then determine the indices } k \text{ for which } H_0^{(k)} \text{ is not rejected at level } \alpha, \text{ and obtain a } (1 - \alpha) \times 100\% \text{ confidence set for the true phylogeny.} \end{split}$$

# **Example II: A Longitudinal Study**

This is an example on testing *simple order* hypothesis. We consider

- a longitudinal study on parents whose children died by accident.
- *Research question*: does parents' depression change over time?
- Data were collected on 11 parents at 3 month, 6 month, and 18 month post-death.

### **Example II: A Longitudinal Study**

• Let  $Y_1, Y_2$ , and  $Y_3$  denote depression measurements at month 3, 6, and 18 post-death.

• Let 
$$\mu_i = E(Y_i), \ i = 1, 2, 3.$$

 We want to test whether parents' depression decreases over time, i.e., test

$$H_0: \mu_3 \le \mu_2 \le \mu_1$$
 versus  $H_1: \operatorname{not} H_0$ 

 $H_0$  is a simple order hypothesis.

### **General Case**

• Let  $X \sim N(\mu, \Sigma)$  (  $\mu$  and  $\Sigma$  unknown). Consider testing

 $H_0: \max\{\mu_1, \cdots, \mu_p\} \le 0, \quad \text{vs.} \quad H_1: \max\{\mu_1, \cdots, \mu_p\} > 0.$ 

- Hotelling  $T^2$  test may be undesirable since it fails to incorporate the constraints on the parameter spaces.
- Commonly used tests: likelihood ratio test (LRT), union-intersection test (UIT).
- Problem with LRT and UIT: they may exhibit anomalous behavior since they are unable to adapt to the varying dimensionalities of the boundary of  $H_0$ .



#### Anomalies of the LRT and UIT

Assume  $\Sigma = I$  for simplicity. The size  $\alpha$  LRT *accepts*  $H_0$  iff  $||X - \mathcal{N}^p||^2 \equiv (X_1^+)^2 + \dots + (X_p^+)^2 \leq a_{p,\alpha}^2$ , (1) where  $X_i^+ \equiv \max(0, X_i)$  and  $a_{p,\alpha}^2$  is a critical value. The size  $\alpha$  UIT *accepts*  $H_0$  iff

$$\max(X_1, \dots, X_p) \le u_{p,\alpha},$$
where  $u_{p,\alpha} = \Phi^{-1}(\sqrt[p]{1-\alpha}).$ 
(2)

#### **Anomalies of LRT and UIT: an example**

Suppose p = 2 and  $\alpha = 0.05$ .

- The LRT rejects  $H_0$  if  $[(X_1^+)^2 + (X_2^+)^2]^{1/2} > 2.05$ .
- The UIT rejects  $H_0$  if  $\max(X_1, X_2) > 1.95$ .

Now, if we observe  $X^* = (1.8, -10)$ . Then, neither LRT nor UIT reject  $H_0$ .

However, consider testing  $H_{01}: \mu_1 \leq 0$  vs  $H_{11}: \mu_1 > 0$ individually.  $H_{01}$  is clearly rejected. So  $H_0$  should also be rejected since  $H_0 \subset H_{01}$ . Contradiction!

### Anomalies of LRT and UIT

The anomalies of LRT and UIT become more emphatic as  $\boldsymbol{p}$  increases.

In fact, for a sequence of alternatives  $(\mu_1, \ldots, \mu_p)$  with  $\mu_1$ arbitrarily large but max $\{\mu_2, \cdots, \mu_p\} \to -\infty$  as  $p \to \infty$ , the powers of the LRT and UIT approach 0.

However, for such alternatives, any appropriate test procedure should have reasonable power to reject  $H_0$ .



## **Anomalies of LRT and UIT: Explanation**

- The boundary of  $H_0$  consists of a union of faces of varying dimensions (i.e., dimensions  $0, 1, \ldots, p-1$ ).
- The LRT and UIT determine their critical values with reference to the face of *lowest* dimension. So they fail to adapt to the *varying* dimensionalities of the faces of  $H_0$ .
- Such contradictory behavior of the LRT and UIT also occur in other constrained multi-parameter testing problems.

# A New Test

- We propose a new test which *adapts* to the varying dimensionalities in the boundary of  $H_0$ .
- The idea is to combine the p-values for testing the *individual* faces of  $H_0$ .
- Since a *p*-value is "self-weighting" according to the dimensionality of H<sub>0</sub>, the new test adapts to the varying dimensionalities of the faces of H<sub>0</sub>.
- The new test avoids the contradictory behavior of the LRT/UIT, so may better reflect the evidence provided by the data.

## A New Test (Case I: $\Sigma = I$ )

We accepts  $H_0$  iff

$$(1 - 1_{\mathcal{N}^p}(X)) \sum_{i \in \sigma} X_i^2 \le \tilde{a}_{|\sigma|,\alpha}^2 \quad and \quad \max_{i \notin \sigma} X_i \le 0$$
(3)

for at least one  $\sigma \in S^p$ , where  $S^p = 2^{\{1,\dots,p\}} \setminus \emptyset$ ,  $\mathcal{N}^p \equiv \{(\mu_1,\dots,\mu_p) : \mu_1 \leq 0,\dots,\mu_p \leq 0\}$  is the nonpositive orthant in  $\mathbb{R}^p$ , and  $\tilde{a}_{k,\alpha}^2$  is a critical value.

The above test is motivated by combining the *p*-values for testing the *individual faces* of  $H_0$ .





### A New Test (Case II: $\Sigma$ unknown)

We accept  $H_0$  iff

$$[1 - 1_{\mathcal{N}^p}(X)] \cdot \|X - L_{\sigma}\|_S^2 \le a^*_{|\sigma|,\alpha} \quad \text{and} \quad \pi_S(X; L_{\sigma}) \in \mathcal{N}^p$$

for at least one  $\sigma\in \mathcal{S}^p$ , where the critical values  $a^*_{|\sigma|,\alpha}$  are given by

$$\begin{aligned} \alpha &= \frac{1}{2} \Pr\left[\frac{\chi_{p-1}^2}{\chi_{n_1+n_2-p}^2} > a_{p,\alpha}^*\right] + \frac{1}{2} \Pr\left[\frac{\chi_p^2}{\chi_{n_1+n_2-p-1}^2} > a_{p,\alpha}^*\right] \\ &\equiv \sup_{\mu \in \mathcal{N}^p, \Sigma > 0} \Pr_{\mu, \Sigma} [\|X - \mathcal{N}^p\|_S^2 > a_{p,\alpha}^*]. \end{aligned}$$

# **The New Tests**

- The new tests are motivated by *combining the individual* p-values for testing the faces of  $H_0$ .
- The new tests better adapt to the varying dimensionalities of the boundaries of null parameter space.
- The new tests may be also more powerful than the LRT and UIT in many cases. The power advantage can be substantial (see simulation results).

### Simulation

- We compare the new test (NEW) with the LRT and UIT via simulation.
- In all simulations, we have 5,000 iterations. We set nominal level  $\alpha = 5\%$ , and sample sizes  $n_1 = n_2 = 40$ . We denote  $(-1^4, 0.5) = (-1, -1, -1, -1, 0.5)$ , etc.
- We consider several mean vectors  $\mu$  and covariance matrices  $\Sigma_1, \Sigma_2, \Sigma_3$ . Each  $\Sigma_i$  is an intraclass correlation matrix with all diagonal elements = 1 and all off-diagonal elements =  $\rho_i$ , with  $\rho_1 = 0, \rho_2 = 0.4, \rho_3 = 0.8$  respectively.

Table 1. Simulation results: sizes (type I error rates). Nominal level  $\alpha = 5\%$ .

| Dimension | Mean $\mu$    | LRT                 | UIT | NEW | LRT | UIT               | NEW        | LRT                 | UIT | NEW |
|-----------|---------------|---------------------|-----|-----|-----|-------------------|------------|---------------------|-----|-----|
|           |               | $\Sigma = \Sigma_1$ |     |     | Σ   | $\Sigma = \Sigma$ | $\Sigma_2$ | $\Sigma = \Sigma_3$ |     |     |
| p = 2     | (0,0)         | 3.0                 | 4.8 | 3.8 | 2.8 | 4.8               | 3.8        | 1.6                 | 3.5 | 2.6 |
|           | (-1, 0)       | 1.1                 | 2.6 | 5.0 | 1.2 | 2.8               | 5.1        | 1.0                 | 2.5 | 4.8 |
|           | (-5, 0)       | 1.2                 | 2.4 | 4.9 | 1.0 | 2.2               | 4.5        | 1.1                 | 2.4 | 4.8 |
| p = 5     | $(0,0^4)$     | 1.7                 | 5.3 | 2.9 | 0.7 | 4.6               | 1.8        | 0.2                 | 2.6 | 0.9 |
|           | $(-1, 0^4)$   | 0.8                 | 4.0 | 3.1 | 0.6 | 3.2               | 2.0        | 0.2                 | 2.3 | 1.3 |
|           | $(-1^2, 0^3)$ | 0.3                 | 3.0 | 3.6 | 0.2 | 2.8               | 2.8        | 0.1                 | 2.2 | 1.8 |
|           | $(-1^3, 0^2)$ | 0.2                 | 2.1 | 4.2 | 0.1 | 1.5               | 3.0        | 0.1                 | 1.4 | 2.6 |
|           | $(-1^4, 0)$   | 0.0                 | 1.0 | 5.0 | 0.1 | 1.0               | 4.7        | 0.1                 | 0.9 | 4.8 |

Table 2. Simulation results: powers comparison (in %).

| Dimension | Mean $\mu$      | LRT                 | UIT | NEW | LRT                 | UIT | NEW | LRT                 | UIT | NEW |
|-----------|-----------------|---------------------|-----|-----|---------------------|-----|-----|---------------------|-----|-----|
|           |                 | $\Sigma = \Sigma_1$ |     |     | $\Sigma = \Sigma_2$ |     |     | $\Sigma = \Sigma_3$ |     |     |
| p=2       | (0.2, 0.2)      | 22                  | 25  | 23  | 17                  | 24  | 19  | 13                  | 21  | 15  |
|           | (-1, 0.3)       | 17                  | 26  | 37  | 16                  | 25  | 36  | 17                  | 27  | 38  |
|           | (-5, 0.3)       | 17                  | 25  | 36  | 17                  | 26  | 38  | 17                  | 27  | 37  |
| p = 5     | $(0.1, 0.1^4)$  | 9                   | 14  | 11  | 2                   | 11  | 4   | 1                   | 7   | 2   |
|           | $(-1, 0.5^4)$   | 94                  | 91  | 97  | 53                  | 79  | 68  | 28                  | 63  | 46  |
|           | $(-1^2, 0.5^3)$ | 79                  | 84  | 93  | 44                  | 73  | 71  | 24                  | 60  | 52  |
|           | $(-1^3, 0.5^2)$ | 50                  | 70  | 85  | 32                  | 64  | 73  | 21                  | 55  | 61  |
|           | $(-1^4, 0.5)$   | 14                  | 45  | 72  | 13                  | 43  | 71  | 14                  | 44  | 71  |

## **Simulation Results: Conclusions**

- The new test better adapts to the *varying dimensionalities* of the faces of  $H_0$ , so reduces the undesirable behavior of the LRT and UIT.
- The new test is approximately size  $\alpha$ , is more nearly similar on the boundary of  $H_0$ , and is more nearly unbiased than the LRT and the UIT.
- Our preference for the new test is based *not* mainly on consideration of power and unbiasedness but rather on the fact that it better reflects *the evidence the data provides* regarding the competing hypotheses.

#### **A Related Test**

Sometimes it is more practical to assert that treatment 1 is preferred if it is superior for at least one of the endpoints and biologically "noninferior" for the remaining endpoints.

In other words, we want to test

$$H'_{0}: \ \mu \in \Theta_{0} \equiv \left\{ \max_{1 \le j \le p} \mu_{j} \le 0 \right\} \cup \left\{ \max_{1 \le j \le p} \mu_{j} > 0 \text{ and } \mu_{j} \le -\epsilon_{j} \text{ for some } j \right\}, \quad (4)$$

versus  $H'_1$ : not  $H'_0$ , where  $\epsilon_j$ 's are pre-specified positive numbers. Again assume that  $\Sigma$  is unknown.





#### A New Test for the Related Test

Noted that  $H'_0$  is a *union* of

$$H_0: \mu \in \mathcal{N}^p$$
 and  $H_0^{(j)}: \mu_j \leq -\epsilon_j, \ j = 1, \dots, p,$ 

so an intersection-union test (IUT) is appropriate.

We can combine the new test for  $H_0$  with the standard t-test for each  $H_0^{(j)}$ ,  $j = 1, \ldots, p$ , using the IUT idea, to obtain an overall NEW test.

#### A New Test for the Related Test

Since the new test for  $H_0$  and each *t*-test for  $H_0^{(j)}$  adapt to the varying dimensionality, the overall NEW test also adapts to the varying dimensionality of the boundary of  $H_0$ .

Simulation results show that the NEW test performs better than existing tests for this testing problem.

#### **Testing the Simple-Order Restriction**

Let  $X \equiv (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ . Consider testing the *simple-order*.

$$\bar{H}_0: \mu_1 \leq \mu_2 \cdots \leq \mu_p$$
 vs  $\bar{H}_1:$  not  $\bar{H}_0.$  (5)

This test is very common in practice. Denote

$$\mathcal{C}^p = \{ \mu \equiv (\mu_1, \dots, \mu_p) \mid \mu_1 \leq \dots \leq \mu_p \}$$

The boundary of  $\overline{H}_0$  is again a union of faces of *varying* dimensionalities. So the commonly used LRT may be undesirable.



Figure 2. Rejection/acceptance regions of the LRT and the new test PW9 for (19) with  $\Sigma$ known ( $\Sigma = I$ ). LRT: dotted line, PW9: dashed line

#### **Testing the Simple-Order Restriction**

The LRT accepts  $\bar{H}_0$  iff

$$||X - \mathcal{C}^p||_{\hat{\Sigma}}^2 \le d_{p,\alpha}^{*2}.$$
 (6)

Again, the LRT fails to adapt the *varying dimensionalities* of the faces of  $H_0$ .

A new test: accepts  $\overline{H}_0$  iff

$$[1 - 1_{\mathcal{C}^p}(X)] \cdot \|X - L_{\tau}\|_{\hat{\Sigma}}^2 \leq d_{|\tau|,\alpha}^{*2} \quad and \quad \pi_{\hat{\Sigma}}(X, L_{\tau}) \in \mathcal{C}^p$$
  
for at least one  $\tau \in \mathcal{S}^{p-1}$ .

# **Testing the Simple-Order Restriction**

The new test is obtained by combining *individual p-values* associated with testing each face of  $\bar{H}_0$  (each individual test is a LRT).

Thus, unlike the LRT, the new test should adapt to the varying dimensionalities since a p-value is "self-weighting" according to the dimensionality of  $H_0$ , so the new test should better reflect the evidence provided by the data.

#### **A Simulation Study**

- We consider the cases of p = 3 and p = 5.
- Four covariance matrices  $\Sigma_i$ , i = 1, 2, 3, 4. Each covariance matrix has diagonal elements being all 1 and off-diagonal elements being 0.4, 0.8, -0.4, and -0.8 respectively.
- Sample sizes  $n_1 = n_2 = 40$ .
- 5,000 iterations.
- Nominal level  $\alpha = 0.05$ .

| Dimension $p$ | Mean $\mu$   | LRT                 | NEW | LRT                 | NEW | LRT                 | NEW | LRT      | NEW          |
|---------------|--------------|---------------------|-----|---------------------|-----|---------------------|-----|----------|--------------|
|               |              | $\Sigma = \Sigma_1$ |     | $\Sigma = \Sigma_2$ |     | $\Sigma = \Sigma_3$ |     | $\sum$ = | = $\Sigma_4$ |
| p = 3         | (0, 0, 0)    | 1.3                 | 4.8 | 1.3                 | 4.0 | 1.3                 | 4.4 | 1.4      | 4.8          |
|               | (0, 0, 1)    | 0.5                 | 4.2 | 0.4                 | 4.3 | 0.4                 | 4.7 | 0.4      | 4.8          |
|               | (0, 1, 1)    | 0.5                 | 5.2 | 0.3                 | 4.8 | 0.3                 | 4.4 | 1.6      | 4.6          |
| p = 5         | $(0^4, 0)$   | 1.6                 | 3.9 | 1.5                 | 4.0 | 1.6                 | 4.4 | 1.6      | 4.8          |
|               | $(0^4,1)$    | 0.7                 | 4.4 | 0.6                 | 4.1 | 0.6                 | 4.1 | 0.4      | 3.6          |
|               | $(0^3, 1^2)$ | 0.7                 | 4.1 | 0.4                 | 3.3 | 0.5                 | 4.0 | 0.4      | 4.0          |
|               | $(0^2, 1^3)$ | 0.6                 | 3.7 | 0.6                 | 3.5 | 0.6                 | 3.8 | 0.4      | 4.0          |
|               | $(0,1^4)$    | 0.6                 | 4.9 | 0.9                 | 4.3 | 0.7                 | 4.3 | 1.4      | 4.4          |

| Dimension $p$ | Mean $\mu$              | LRT                 | NEW | LRT                 | NEW | LRT                 | NEW | LRT                 | NEW |
|---------------|-------------------------|---------------------|-----|---------------------|-----|---------------------|-----|---------------------|-----|
|               |                         | $\Sigma = \Sigma_1$ |     | $\Sigma = \Sigma_2$ |     | $\Sigma = \Sigma_3$ |     | $\Sigma = \Sigma_4$ |     |
| p = 3         | $\left(0.5,0,0 ight)$   | 27                  | 43  | 38                  | 56  | 86                  | 94  | 24                  | 38  |
|               | $\left(0.5,0.5,0 ight)$ | 27                  | 42  | 22                  | 38  | 20                  | 35  | 28                  | 45  |
|               | $\left(0.5,0,0.5 ight)$ | 15                  | 34  | 27                  | 50  | 80                  | 92  | 11                  | 29  |
|               | (0, 0, -0.5)            | 26                  | 41  | 23                  | 38  | 20                  | 34  | 28                  | 42  |
| p = 5         | $(0.4, 0^4)$            | 14                  | 24  | 26                  | 38  | 76                  | 84  | 11                  | 19  |
|               | $(0, 0.4, 0^3)$         | 11                  | 21  | 19                  | 33  | 66                  | 81  | 8                   | 17  |
|               | $(0, 0.4^2, 0^2)$       | 14                  | 28  | 26                  | 45  | 82                  | 93  | 11                  | 22  |
|               | $(0.3^4, -0.3)$         | 36                  | 48  | 59                  | 71  | 99                  | 100 | 29                  | 42  |

# **Simulation Results**

- The new test adapts to the *varying dimensionality* of the faces of  $\bar{H}_0$ , while the LRT does not.
- The new test is more nearly similar and less biased than the LRT, and is often substantially more powerful than the LRT.
- Our preference for the new test is based mainly on its better representing the evidence provided by the data (i.e., better adaption to the dimensionalities), rather than size/power.

#### Example I (cont.): Finding True Phylogenies

- We consider again the 5 most probable (true) phylogenies.
- We test each  $H_0^{(k)} : \max_{j \neq k} (\mu_j \mu_k) \le 0$  versus  $H_1^{(k)} :$  not  $H_0^{(k)}$ , where  $\mu_j = E(Y_j)$ .
- Let  $\Delta Y_k = \max_{j \neq k} (Y_j Y_k), \ k = 0, \dots, 4$ , where  $Y_k$  is the maximized likelihood for the k-th phylogeny. The data give

$$(\Delta Y_0, \dots, \Delta Y_4) = (0.0, 19.5, 22.7, 29.1, 33.6).$$

• At 80% confidence level, the confidence sets are: LRT leads to  $\{1, 2, 3, 4, 5\}$ , the UIT leads to  $\{1, 2, 3\}$ , and the NEW test leads to  $\{1, 2, 3, 4\}$ .

#### Example II (cont.): A Longitudinal Study

- Let  $Y_i$  be the depression at time  $t_i$ . Let  $\mu_i = E(Y_i)$ . We want to test  $H_0: \mu_3 \leq \mu_2 \leq \mu_1$  versus  $H_1:$  not  $H_0$ .
- The sample mean and sample covariance are

$$(\bar{Y}_1, \bar{Y}_2, \bar{Y}_3) = (0.60, 0.97, 0.73), \qquad \hat{\Sigma} = \begin{pmatrix} 0.32 & 0.63 & 0.40 \\ 0.63 & 1.51 & 0.92 \\ 0.40 & 0.92 & 0.57 \end{pmatrix}.$$

• At the 5% level, the LRT fails to reject  $H_0$ , while the NEW test rejects  $H_0$ . The new test should be more reliable, suggesting that depression does not decrease over time.

# Conclusions

- For testing problems where the parameter spaces have varying dimensionalities, the LRT and UIT fail to adapt to this varying dimensionality and thus may produce misleading results.
- The proposed new tests adjust the varying dimensionality, so better reflect the evidence provided by the data.
- The new tests are obtained by combining *individual p-values* associated with testing individual faces of the null space.
- Simulations show that the new tests are better than the LRT and UIT.

# Acknowledgment

We thank Professor Ajit Tamhane for very helpful comments and suggestions.