Multiple Testing and Shrinkage Estimation

Debashis Ghosh

Department of Biostatistics

University of Michigan

Multiple Comparisons Procedures 2005

Joint work with Wei Chen and Trivellore Raghunathan

Outline

- I. Introduction
- II. False discovery rate (FDR): definition
- III. Model for FDR
- IV. FDR and variable selection
- V. Double shrinkage estimation
- VI. Future Work

Introduction

- Tremendous recent interest in multiple testing procedures
- Scientific application areas

o Functional genomics

- o Brain imaging
- Chemometrics
- Astrophysics

0

False discovery rate

- Suppose we are interested in testing a set of m hypotheses
- For m_0 of them, the null is true

Table 1: Outcomes of m tests of hypotheses

W	${ m True} { m Alternative} \Big { m True} { m True} $	True Null U	Accept
V	۱ ,	J	ept
Q	S	V	Reject
m	m_1	m_0	Total

FDR defined as

$$FDR \equiv E\left[\frac{V}{Q} \mid Q > 0\right] P(Q > 0).$$

Multiple testing: philosophy

- FDR is more liberal than familywise error rate for certain situations
- Goal with massively multiple testing problems: selection
- discoveries" Want to make selections that have a high probability of being "real
- Thus, what is really important are correctly calibrated inferences
- Bayesian (and more generally shrinkage) approaches offer such a calibration

Goals of research

- Study FDR behavior from a risk point of view
- Relate FDR to variable selection procedures
- Propose shrinkage estimators for multiple testing

FDR: mixture model

- Let T_1, \ldots, T_m be independent test statistics
- Let H_1, \ldots, H_m be indicator variables where $H_i = 0$ if the *i*th null

hypothesis is true and $H_i = 1$ if the *i*th alternative hypothesis is true

- H_1,\ldots,H_m are a random sample from a Bernoulli distribution where for $i = 1, \dots, m, P(H_i = 0) = \pi_0$
- Storey (2002) proved that

$$pFDR(R) = P(H = 0|T \in R)$$

= $\frac{\pi_0 P(T \in R|H = 0)}{P(T \in R)}$,

where
$$pFDR = E\left[\frac{V}{Q} \mid Q > 0\right]$$

FDR: mixture model (cont'd.)

- Note that pFDR does not condition on all data
- Local FDR, defined as $P(H = 0|T_1, ..., T_m)$ is fully conditional
- Bias-variance tradeoff in choice of cardinality of data points to condition on
- Test statistics get "used" as data points

FDR and variable selection

selection in regression Assume probabilistic framework of George and McCulloch for predictor

$$Y_i \overset{ind}{\sim} N(\mathbf{X}_i^Teta, \sigma^2)$$

$$\beta_i | \gamma_i \sim (1 - \gamma_i) N(0, \tau_i^2) + \gamma_i N(0, c_i^2 \tau_i^2)$$

$$\gamma_i \overset{ind}{\sim} Be(p_i)$$

(3)

(2)

$$\sigma^2 \sim IG(\nu/2, \nu/2)$$

- Rank based on the posterior distribution of γ_i
- Then the local FDR at zero is

$$P(\gamma_i = 0 | \hat{\beta}_i = 0)$$

The false discovery rate based on $\hat{\beta}_l$ being in a critical region R is

$$FDR(R) \equiv \frac{\int_{x \in R} \{2\pi(\sigma_l^2 + c_l^2 \tau_l^2)\}^{-1/2} \exp\{-x^2/(\sigma_l^2 + c_l^2 \tau_l^2)\} dx}{\int_{x \in R} \{2\pi(\sigma_l^2 + \tau_l^2)\}^{-1/2} \exp\{-x^2/(\sigma_l^2 + \tau_l^2)\} dx}$$

Proposed variable selection procedure

- (a) Set level to be α and fix a rejection region R.
- (b) Fit model (1) (4) using Markov Chain Monte Carlo (MCMC) methods.
- (c) Based on the MCMC output, calculate $pp_i \equiv P(\gamma_i = 0 | \hat{\beta}_i \in R), i = 1, \dots, G$.
- (d) Let $pp_{(1)} \leq pp_{(2)} \leq \cdots \leq pp_{(G)}$ denote the sorted values of pp_1, \ldots, pp_n in increasing order
- (e) Find $\hat{k} = \max\{1 \le k \le G : pp_{(k)} \le \alpha k/G\}$; select variables $1, \ldots, G$.

FDR mixture model: revisited

- targets We can think of the mixture model for testing as defining two estimation
- Consider shrinkage estimation in this setting
- under null and alternative Note: Shrinkage will only occur if test statistics have differing variances

Double shrinkage estimators

- alternative hypotheses, μ_0 and μ_1 Shrink test statistics towards two targets corresponding to null and
- Assume π_0 is known
- With respect to the first component, a shrinkage estimator is given by

$$T_{0i}^{JS} = T_i - \left[1 \wedge \frac{n-2}{\sum_{i=1}^n (T_i - \mu_0)^2}\right] (T_i - \mu_0),$$
 (5)

For the second component,

$$T_{1i}^{JS} = T_i - \left[1 \wedge \frac{n-2}{\sum_{i=1}^n (T_i - \mu_1)^2}\right] (T_i - \mu_1)$$

A shrinkage estimator combining (5) and (6) is then given by $T_i^{JS} = \pi_0(T_i)T_{0i}^{JS} + \pi_1(T_i)T_{1i}^{JS}$, $i = 1, \dots, n$, where

$$\pi_k(T_i) = \frac{\pi_k f_k(T_i)}{\pi_0 f_0(T_i) + \pi_1 f_1(T_i)}.$$
 (7)

and f_0 and f_1 refer to the marginal densities of the distribution of the test statistics under the null and alternative hypotheses

Double shrinkage estimators (cont'd.)

- This can be done with p-values as well (SPADE)
- Issues:
- 1. Estimating π_0 from data
- 2. What does a p-value estimate?
- This gives correctly calibrated measures of evidence that adjusts for multiple testing

Simulation results

Table 2: Estimated mean-squared errors from simulation studies

Effect	π_0	Q-value	SPADE1	SPADE2	SPADE3
Small	0.2	0.179	0.186	0.180	0.16
	0.5	0.264	0.333	0.358	0.302
	0.8	0.165	0.333	0.380	0.31
Medium	0.2	0.179	0.183	0.171	0.168
	0.5	0.272	0.328	0.326	0.309
	0.8	0.168	0.330	0.374	0.319
Large	0.2	0.161	0.166	0.173	0.164
	0.5	0.251	0.297	0.275	0.296
	0∞	0 161	0.312	0 910	0 219

SPADE3 is based on Dalmasso et al. (2005) method for estimation of π_0 . SPADE methodology, where π_0 is estimated using algorithm of Storey and Tibshirani Note: Q-value refers to method of Storey and Tibshirani (2003). SPADE1 is the (2003); SPADE2 is based on Pounds and Cheng (2004) method for estimation of π_0 ;

Gene expression example

- Differential expression analysis focusing on localized versus metastatic prostate cancer
- 59 localized samples and 20 metastatic samples
- Following preprocessing steps:
- 1. Genes that were reported as missing in more than 10% of samples were filtered out.
- 2. Genes that had a sample variation greater than 0.15 across all samples
- Total of m = 5241 genes
- p-values based on N(0,1) distribution for t-statistic

Discussion

- inferences In many multiple testing problems, what matters is having calibrated
- Shrinkage/Bayesian approaches achieve this objective
- Future work:
- 1. Synthesized framework using Bayes factors
- 2. Graduated differential expression

References

Ghosh, D., Chen, W. and Raghunathan, T. E. (2004). The false discovery http://www.bepress.com/umichbiostat/paper41/ rate: a variable selection perspective.

Ghosh, D. (2005). Simultaneous estimation procedures and multiple testing: http://www.bepress.com/umichbiostat/paper54/ a decision-theoretic framework

Ghosh, D. (2005). Shrunken p-values for assessing differential expression, with applications to genomic data analysis. http://www.bepress.com/umichbiostat/paper55/

CPS