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Introduction ‘

e Tremendous recent interest in multiple testing procedures

e Scientific application areas
Functional genomics
Brain imaging

Chemometrics

Astrophysics




False discovery rate

e Suppose we are interested in testing a set of m hypotheses

e For mg of them, the null is true

Table 1: Outcomes of m tests of hypotheses

Accept | Reject | Total
True Null U Vv mo

True Alternative T S my

\WY Q m

e FDR defined as

ﬁwmmmﬁm _QVL E@vs.




Multiple testing: philosophy

FDR is more liberal than familywise error rate for certain situations
Goal with massively multiple testing problems: selection

Want to make selections that have a high probability of being “real
discoveries”

Thus, what is really important are correctly calibrated inferences

Bayesian (and more generally shrinkage) approaches offer such a calibration




Goals of research

e Study FDR behavior from a risk point of view

e Relate FDR to variable selection procedures

e Propose shrinkage estimators for multiple testing




FDR: mixture model

Let T4,...,T,, be independent test statistics

Let Hq,..., H,, be indicator variables where H; = 0 if the ith null
hypothesis is true and H; = 1 if the ¢th alternative hypothesis is true.

Hq,..., H, are a random sample from a Bernoulli distribution where for
i=1,...,m, P(H; =0) = mg
Storey (2002) proved that

pFDR(R) P(H =0|T € R)

\\N.ONUAMJ c m_m = OV
P(T € R) u

where pFDR = E R Q> &




FDR: mixture model (cont’d.)

Note that pFDR does not condition on all data

Local FDR, defined as P(H = 0|11, ...,T},) is fully conditional

Bias-variance tradeoff in choice of cardinality of data points to condition on

Test statistics get “used” as data points




FDR and variable selection

e Assume probabilistic framework of George and McCulloch for predictor
selection in regression

Y; N(X7 B,0%
Vi Be(pi)
o’ IG(v/2,v/2)

e Rank based on the posterior distribution of ~;

e Then the local FDR at zero is

P(v; = 0|6; = 0)

e The false discovery rate based on @ being in a critical region R is

Joerf2m(of + 1)} 2 exp{—2®/ (o + 7} }du

FDR(R)

%ammﬁmiﬁm + 12)} 12 exp{—22?/(0? + 77) }dx
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Proposed variable selection procedure

Set level to be o and fix a rejection region R.
Fit model (1) - (4) using Markov Chain Monte Carlo (MCMC) methods.
Based on the MCMC output, calculate pp; = P(vy; = o_m@ €ER),i=1,...,G.

Let pp1)y < ppe2y < -+ - < pp(e) denote the sorted values of ppy,...,pp, in

increasing order.

Find k = max{l <k < G : ppp) < ak/G}; select variables 1,...,G.




FDR mixture model: revisited

We can think of the mixture model for testing as defining two estimation
targets

Consider shrinkage estimation in this setting

Note: Shrinkage will only occur if test statistics have differing variances

under null and alternative

11



Double shrinkage estimators

Shrink test statistics towards two targets corresponding to null and
alternative hypotheses, ug and uq

Assume 7 is known

With respect to the first component, a shrinkage estimator is given by

n—2
> ie1 (T — po)?

TS =T; — T N ~ (T3 — o),

For the second component,
n—2
> i1 (Ti — p1)?
A shrinkage estimator combining (5) and (6) is then given by
TS = mo(T) T3S +m(T)TES, i =1,...,n, where
7k [ (T})
mofo(T3) + w1 f1(T3)

and fp and f; refer to the marginal densities of the distribution of the test

ﬁ%nﬁ|~§/

~ (T — 1)

statistics under the null and alternative hypotheses
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Double shrinkage estimators (cont’d.)

e This can be done with p-values as well (SPADE)

e Issues:
1. Estimating 7y from data
2. What does a p-value estimate?

e This gives correctly calibrated measures of evidence that adjusts for multiple

testing
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Simulation results

Table 2: Estimated mean-squared errors from simulation studies

Effect o Q-value SPADE1 SPADE2 SPADE3
Small 0.2 0.179 0.186 0.180 0.16
0.5 0.264 0.333 0.358 0.302
0.8 0.165 0.333 0.380 0.31
Medium 0.2 0.179 0.183 0.171 0.168
0.5 0.272 0.328 0.326 0.309
0.8 0.168 0.330 0.374 0.319
0.2 0.161 0.166 0.173 0.164
0.5 0.251 0.297 0.275 0.296
0.8 0.161 0.312 0.310 0.312

Note: Q-value refers to method of Storey and Tibshirani (2003). SPADEL is the
SPADE methodology, where 7 is estimated using algorithm of Storey and Tibshirani
(2003); SPADE?2 is based on Pounds and Cheng (2004) method for estimation of 7o;
SPADES3 is based on Dalmasso et al. (2005) method for estimation of .




Gene expression example

Differential expression analysis focusing on localized versus metastatic

prostate cancer
59 localized samples and 20 metastatic samples

Following preprocessing steps:

1. Genes that were reported as missing in more than 10% of samples were
filtered out.

2. Genes that had a sample variation greater than 0.15 across all samples

Total of m = 5241 genes

p-values based on N (0, 1) distribution for t-statistic
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Gene expression example (cont’d.)
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Figure 1: Plot of g-values using Storey (2002) method (horizontal axis) versus
shrunken p-values from SPADE.
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Discussion '

In many multiple testing problems, what matters is having calibrated
inferences

Shrinkage /Bayesian approaches achieve this objective

Future work:
1. Synthesized framework using Bayes factors

2. Graduated differential expression
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