A Superiority-Equivalence Approach to One-Sided Tests on Multiple Endpoints

Ajit C. Tamhane

(Joint work with Brent R. Logan)

Department of IE/MS and Department of Statistics

Northwestern University

Evanston, IL 60208

1. Problem

- Compare a treatment (Treatment 1) with a control (Treatment 2) based on $m \geq 2$ endpoints.
- $X_{ijk} = \text{Obs.}$ on the kth endpoint for the jth patient in the ith group $(i = 1, 2; 1 \le j \le n_i; 1 \le k \le m)$.

$$\boldsymbol{X}_{ij} = (X_{ij1}, \dots, X_{ijm}) \sim \text{MVN}_m(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}), \ i = 1, 2; 1 \leq j \leq n_i.$$

• Further notation:

$$\boldsymbol{\theta} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = (\theta_1, \dots, \theta_m)$$

$$\mathbf{R} = \{\rho_{k\ell}\}$$
 = Correlation matrix

- The treatment is expected to have no negative effect on any endpoint and a positive effect on at least one endpoint.
- Traditional one-sided hypothesis testing formulation:

$$H_0: \theta = 0 \text{ vs. } H_1: \theta \in \mathcal{O}^+,$$

where $\mathbf{0}$ is the null vector and

$$\mathcal{O}^+ = \{ \boldsymbol{\theta} | \theta_k \ge 0 \ \forall \ k, \boldsymbol{\theta} \ne \mathbf{0} \}$$

is the positive orthant.

- Likelihood ratio (LR) rejection region for this formulation has some undesirable properties, e.g., is nonmonotone, contains points with some or all negative coordinates.
- Perlman and Wu (2002) show that the LR test using the full complement of \mathcal{O}^+ as the null hypothesis does not have these drawbacks.
- Cone-ordered monotone (COM) rejection region also contains points with some negative coordinates.

Fig. 1: Rejection Region of the LR Test for m=2

Fig. 2: Rejection Region of the COM Test for m=2

2. Proposed Formulation

- The treatment is *superior* on the kth endpoint if $\theta_k > \delta_k$ and equivalent if $\theta_k > -\epsilon_k$, where $\delta_k, \epsilon_k \geq 0$ are specified constants.
- The treatment is deemed *effective* if it is equivalent on *all* endpoints and superior on *at least* one endpoint.
- Superiority Hypotheses:

$$H_{0k}^{(S)}: \theta_k \leq \delta_k \text{ vs. } H_{1k}^{(S)}: \theta_k > \delta_k$$

and

$$H_0^{(S)} = \bigcap_{k=1}^m H_{0k}^{(S)}, H_1^{(S)} = \bigcup_{k=1}^m H_{1k}^{(S)}.$$

• Equivalence Hypotheses:

$$H_{0k}^{(E)}: \theta_k \leq -\epsilon_k \text{ vs. } H_{1k}^{(E)}: \theta_k > -\epsilon_k$$

and

$$H_0^{(E)} = \bigcup_{k=1}^m H_{0k}^{(E)} \text{ and } H_1^{(E)} = \bigcap_{k=1}^m H_{1k}^{(E)}.$$

• Hypothesis Testing Problem:

$$H_0 = H_0^{(S)} \cup H_0^{(E)}$$
 vs. $H_1 = H_1^{(S)} \cap H_1^{(E)}$.

• Combination of union-intersection (UI) (Roy 1953) and intersection-union (IU) (Berger 1982) testing problems.

Fig. 3: Hypotheses H_0 and H_1 for m=2

3. Simultaneous Confidence Intervals (SCI) Approach

- Denote by $\overline{X}_{1\cdot k}$ and $\overline{X}_{2\cdot k}$ the sample means for the kth endpoint for group 1 and group 2. Denote by $S_1^2, S_2^2, \ldots, S_m^2$ the pooled sample variances based on $\nu = n_1 + n_2 2$ degrees of freedom.
- The pivotal r.v. for θ_k is

$$T_k = \frac{(\overline{X}_{1 \cdot k} - \overline{X}_{2 \cdot k}) - \theta_k}{S_k \sqrt{1/n_1 + 1/n_2}} = \frac{Z_k}{U_k},$$

where $\mathbf{Z} = (Z_1, \dots, Z_k)$ is std. multivariate normal with correlation matrix \mathbf{R} . Denote the p.d.f. Of \mathbf{Z} by $\phi_m(\mathbf{z}|\mathbf{R})$. Next,

$$U_k = \frac{S_k}{\sigma_k} \sim \sqrt{\frac{\chi_\nu^2}{\nu}}.$$

Denote the p.d.f. of $\mathbf{U} = (U_1, \dots, U_m)$ by $h_{m,\nu}(\mathbf{u}|\mathbf{R})$.

- Each $T_k \sim \text{Student's } t_{\nu}$. The joint distribution of (T_1, T_2, \dots, T_m) is a multivariate generalization of a bivariate t-distribution of Siddiqui (1967).
- Denote by $t_{\nu,\mathbf{R},\alpha} = (1-\alpha)$ th quantile of $\max_{1 \leq k \leq m} T_k$. The Bonferroni upper bound: $t_{\nu,\alpha/m} > t_{\nu,\mathbf{R},\alpha}$.

• $100(1-\alpha)\%$ SCI's on the θ_k :

$$\theta_k \ge L_k = \overline{x}_{1 \cdot k} - \overline{x}_{2 \cdot k} - t_{\nu, \alpha/m} s_k \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \quad (1 \le k \le m).$$

• Treatment is equivalent on the kth endpoint if

$$L_k > -\epsilon_k \iff t_k^{(E)} = \frac{\overline{x}_{1 \cdot k} - \overline{x}_{2 \cdot k} + \epsilon_k}{s_k \sqrt{1/n_1 + 1/n_2}} > t_{\nu,\alpha/m}.$$

 \bullet Treatment is superior on the kth endpoint if

$$L_k > \delta_k \iff t_k^{(S)} = \frac{\overline{x}_{1 \cdot k} - \overline{x}_{2 \cdot k} - \delta_k}{s_k \sqrt{1/n_1 + 1/n_2}} > t_{\nu,\alpha/m}.$$

• Reject H_0 if

$$\min_{1 \le k \le m} t_k^{(E)} > t_{\nu,\alpha/m} \text{ and } \max_{1 \le k \le m} t_k^{(S)} > t_{\nu,\alpha/m}.$$

• In addition, all endpoints can be classified with FWE $\leq \alpha$ into (i) not equivalent $(L_k \leq -\epsilon_k)$, (ii) equivalent but not superior $(-\epsilon_k < L_k \leq \delta_k)$, (iii) superior $(L_k > \delta_k)$.

4. A Combination Union-Intersection and Intersection-Union (UI-IU) Test

4.1 UI-IU Test

- Since $H_0 = H_0^{(S)} \cup H_0^{(E)}$, an α -level IU test rejects $H_0^{(S)}$ and $H_0^{(E)}$ each separately @ level α .
- Since $H_0^{(E)} = \bigcup_{k=1}^m H_{0k}^{(E)}$, an α -level IU test rejects @ level α if $\min_{1 \le k \le m} t_k^{(E)} > t_{\nu,\alpha}$ (note smaller constant than that used by SCI's).
- Since $H_0^{(S)} = \bigcap_{k=1}^m H_{0k}^{(S)}$, an α -level UI test rejects @ level α if $\max_{1 \le k \le m} t_k^{(S)} > t_{\nu,\alpha/m}$.
- The following argument shows that this test can be sharpened.
- Controlling α separately for $H_0^{(S)}$ and $H_0^{(E)}$ assumes that one hypothesis is true and the other is infinitely false, which is the Least Favorable Configuration (LFC).

- It is possible that $H_0^{(E)} = \bigcup_{k=1}^m (\theta_k \le -\epsilon_k)$ is true but $H_0^{(S)} = \bigcap_{k=1}^m (\theta_k \le \delta_k)$ is infinitely false. Therefore the IU test of $H_0^{(E)}$ can't be sharpened.
- It is not possible that $H_0^{(S)} = \bigcap_{k=1}^m (\theta_k \leq \delta_k)$ is true but $H_0^{(E)} = \bigcup_{k=1}^m (\theta_k \leq -\epsilon_k)$ is infinitely false. Therefore the UI test of $H_0^{(S)}$ can be sharpened.
- Denote the critical constant for the IU test of $H_0^{(E)}$ by $c = t_{\nu,\alpha}$ and the critical constant for the UI test of $H_0^{(S)}$ by $d \geq c$.

Problem: Find the smallest possible d.

• Note

$$t_k^{(S)} = t_k^{(E)} - \frac{\delta_k + \epsilon_k}{s_k \sqrt{1/n_1 + 1/n_2}}.$$

Therefore the rejection region of the UI-IU test is

$$\min_{1 \le k \le m} \left\{ t_k^{(S)} + \frac{\delta_k + \epsilon_k}{s_k \sqrt{1/n_1 + 1/n_2}} \right\} > c \text{ and } \max_{1 \le k \le m} t_k^{(S)} > d.$$

• Let

$$\delta_k^* = \frac{\delta_k}{\sigma_k \sqrt{1/n_1 + 1/n_2}}, \epsilon_k^* = \frac{\epsilon_k}{\sigma_k \sqrt{1/n_1 + 1/n_2}}, \theta_k^* = \frac{\theta_k}{\sigma_k \sqrt{1/n_1 + 1/n_2}}.$$

Then for $s_k \approx \sigma_k$ the rejection region is shown in the next slide.

Fig. 4: Rejection Region of the UI-IU Test for m=2

4.2 Sharpened Critical Constants for the UI-IU Test

For simplicity we consider the known σ_k ($\nu \to \infty$) case. For the finite ν case the probability expressions can be unconditioned w.r.t. the p.d.f. $h_{m,\nu}(\boldsymbol{u}|\boldsymbol{R})$.

Lemma 1: Let

$$a_k = \theta_k^* + \epsilon_k^*, \ b_k = \theta_k^* - \delta_k^*.$$

Then the type I error probability of the general UI-IU test equals

$$Q = \int_{c-a_1}^{\infty} \cdots \int_{c-a_m}^{\infty} \phi_m(\boldsymbol{z}|\boldsymbol{R}) d\boldsymbol{z} - \int_{c-a_1}^{d-b_1} \cdots \int_{c-a_m}^{d-b_m} \phi_m(\boldsymbol{z}|\boldsymbol{R}) d\boldsymbol{z}.$$

Lemma 2: The LFC of the UI-IU test is one or more of the following configurations:

$$LFC_0 = \{\theta_1 = \delta_1, \dots, \theta_m = \delta_m\}$$

LFC_k = {
$$\theta_k = -\epsilon_k, \theta_\ell \to \infty, \ \ell \neq k$$
} ($1 \le k \le m$).

Denote

$$e_k = \delta_k^* + \epsilon_k^* = \frac{\delta_k + \epsilon_k}{\sigma_k} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}.$$

Then

$$Q_{\mathrm{max},0} = \int_{c-e_1}^{\infty} \cdots \int_{c-e_m}^{\infty} \phi_m(\boldsymbol{z}|\boldsymbol{R}) d\boldsymbol{z} - \int_{c-e_1}^{d} \cdots \int_{c-e_m}^{d} \phi_m(\boldsymbol{z}|\boldsymbol{R}) d\boldsymbol{z},$$

and

$$Q_{\max,k} = 1 - \Phi(c) \ (1 \le k \le m) \Rightarrow c = z_{\alpha}.$$

Evaluation of d by solving $Q_{\text{max},0} = \alpha$ requires the knowledge of \mathbf{R} and the σ_k (to calculate the e_k). For the known equicorrelated case with $\delta_k = 0$ and $\epsilon_k = \lambda \sigma_k$, we have calculated d via simulation for selected cases.

Note that the d-values do not involve much multiplicity adjustment except when ρ is large or when $n \to \infty$ $(e_k \to \infty)$.

Simulated Values of d for $\alpha = 0.05$.

					n		
m	λ	ρ	25	50	100	200	∞
2	0.1	0	1.68	1.66	1.65	1.65	1.96
		0.25	1.68	1.66	1.65	1.65	1.95
		0.5	1.68	1.66	1.65	1.70	1.92
		0.75	1.68	1.66	1.75	1.82	1.86
	0.2	0	1.68	1.66	1.65	1.76	1.96
		0.25	1.68	1.66	1.70	1.85	1.95
		0.5	1.68	1.71	1.83	1.90	1.92
		0.75	1.78	1.83	1.86	1.87	1.86
4	0.1	0	1.68	1.66	1.65	1.65	2.24
		0.25	1.68	1.66	1.65	1.65	2.21
		0.5	1.68	1.66	1.65	1.65	2.16
		0.75	1.68	1.66	1.67	1.96	2.06
	0.2	0	1.68	1.66	1.65	1.65	2.24
		0.25	1.68	1.66	1.65	1.99	2.21
		0.5	1.68	1.66	1.94	2.11	2.16
		0.75	1.68	1.97	2.06	2.06	2.06

Lemma 3: If $e_k = \delta_k^* + \epsilon_k^* \to \infty$ for all k then $d = z_{m,\mathbf{R},\alpha} =$ the $(1 - \alpha)$ th quantile of $\max_{1 \le k \le m} Z_k$. Use $d = z_{\alpha/m} \ge z_{m,\mathbf{R},\alpha}$.

Lemma 4: If all $\rho_{k\ell} = 0$ and all $e_k \le c = z_\alpha$ then $d = c = z_\alpha$.

Implications of Lemmas 3 and 4: If the e_k are large (e.g., if the n_k are large) then d is the largest possible $= d = z_{\alpha/m} \ (t_{\nu,\alpha/m})$ for small samples). If the e_k are small then d is the smallest possible $= d = z_{\alpha} \ (t_{\nu,\alpha})$ for small samples).

Numerical Illustration of Lemma 4: Suppose that

 $\delta_k = 0, \epsilon_k = \lambda \sigma_k$ and $n_1 = n_2 = n$. Then $e_k \leq c$ is equivalent to

$$n \le \frac{2c^2}{\lambda^2}.$$

Suppose $\lambda = 0.1$ and c = 1.645 (for $\alpha = .05$). Then

$$n \le \frac{2(1.645)^2}{(0.1)^2} = 541.2.$$

5. Example

- ullet Randomized double-blind crossover as thma trial to compare an inhaled drug with placebo (Tang, Geller and Pocock 1993) with n=17 patients.
- No period effect; hence analyzed as a paired sample study.
- Summary statistics for four endpoints:

	FEV_1	FVC	PEFR	PΙ
Mean Difference	7.56	4.81	2.29	0.081
Std. Dev. of Difference	18.53	10.84	8.51	0.17
t-Statistic	1.682	1.830	1.110	1.965
<i>p</i> -Value	0.0560	0.0430	0.1417	0.0335

The sample correlation matrix:

$$\begin{bmatrix} 1.000 & 0.095 & 0.219 & -0.162 \\ & 1.000 & 0.518 & -0.059 \\ & & 1.000 & 0.513 \\ & & & 1.000 \end{bmatrix}$$

Suppose $\delta_k = 0$ and $\epsilon_k = \lambda \sigma_k$ with $\lambda = 0.20$. Then

$$\frac{\delta_k + \epsilon_k}{s_k \sqrt{1/n}} \approx 0.20 \sqrt{17} = 0.825$$

(assuming $s_k \approx \sigma_k$). Finally, for $\alpha = 0.05$, $c = t_{16,.05} = 1.746$, and by solving $Q_{\text{max},0} = \alpha$ using $\mathbf{R} = \text{sample correlation matrix}$, we obtained d = c = 1.746.

By applying the UI-IU test, we find that

$$\min_{1 \le k \le 4} \left\{ t_k^{(S)} + 0.825 \right\} = \min \left\{ 2.506, 2.655, 1.935, 2.790 \right\} > c = 1.746$$
 and

$$\max_{1 \le k \le 4} \left\{ t_k^{(S)} \right\} = \max \left\{ 1.682, 1.830, 1.110, 1.965 \right\} > d = 1.746.$$

Hence the drug is proven effective.

The smallest value of $\lambda = 0.155$ to conclude equivalence.

In this example both the Bonferroni and Westfall-Young resampling methods give nonsignificant results.