Screening Procedures to Identify **Robust Product (Process) Designs**

Thomas J. Santner

Guohua Pan Ohio State University Novartis Pharmaceuticals Corp

Outline

- 1. The Introduction
- 2. The General Formulation
- 3. The Statistical Procedure
- 4. The Caveats
- 5. Conclusions

1. The Introduction

Goal: Show how the Gupta idea of screening using *subset selection* can be used to determine minimax robust combinations of control variables for products having control & noise variables.

Review

Screening: Balanced One-way Layout

$$Y_{ij} \sim N(\mu_i, \sigma^2), \ 1 \le i \le t, \ 1 \le j \le n$$

where μ_1, \ldots, μ_t and σ^2 are unknown.

NT:
$$\mu_{[1]} \leq \cdots \leq \mu_{[t]}$$

Screening Goal: Given α , $1/t < 1 - \alpha < 1$, determine a (random) set of treatments, say $\mathcal{G} = \mathcal{G}(\mathbf{Y})$, so that

$$P\{[t] \in \mathcal{G}(\boldsymbol{Y}) | \boldsymbol{\mu}, \sigma^2\} \ge 1 - \alpha$$

for all $\boldsymbol{\mu} = (\mu_1, \dots, \mu_t)$ and $\sigma^2 > 0$.

Statistical Screening:

$$\overline{Y}_i = \frac{1}{n} \sum_{j=1}^n Y_{ij} = i^{th}$$
 sample mean, $1 \le i \le t$

NT: $\overline{Y}_{[1]} \leq \cdots \leq \overline{Y}_{[t]}$

Fact:
$$\mathcal{G} = \left\{ i : \overline{Y}_i \ge \overline{Y}_{[t]} - hS\sqrt{\frac{2}{n}} \right\}$$
 is a $100(1-\alpha)\%$

confidence level screening procedure for treatment associated with $\mu_{[t]}$ (with h an upper α critical point from a certain multivariate *t*-distribution)

$$\frac{|}{\overline{Y}_{[t]} - h S \sqrt{\frac{2}{n}} \quad \overline{Y}_{[t]}}$$

Features:

a. Analysis Tool: works for any sample size n (but width of screening yardstick \uparrow with the measurement error (S) and

 \downarrow in the sample size *n*.)

b. Confidence Interval Flavor: Confidence level guarantee holds for all μ , σ^2

c. Probability of CS depends on μ and σ^2 , i.e.,

 $P\{[t] \in \mathcal{G}(\boldsymbol{Y}) | \boldsymbol{\mu}, \sigma^2\} \ge 1 - \alpha$

with \gg possible for μ "favorable" to $\mu_{[t]}$

(discrete distribution confidence interval!)

Our Setup

• Control (manufacturing, engineering) variables

 $\boldsymbol{x_c} = (x_1, \dots, x_g)$

• Noise (environmental, field, operating) variables $\boldsymbol{x}_{e} = (x_{1}, \dots, x_{f})$

Consider designing a prosthetic hip to be used in a population of arthritic patients. The performance of the device, Y, is measured by the maximum strain produced at the bone/prosthesis boundary. Distribution Y depends on

Typical x_c

- prosthesis geometry
- stiffness (material)

Typical x_e

- forces exerted on the prosthesis
- patient bone quality (bone elasticities)
- other environmental variables

Goal: Select a combination of control variables that is robust to the effect of the noise variables

Robust in what sense?

This talk – concerned with applications where it is critical to avoid engineering designs, i.e., x_c , for which *there exist levels of the noise variables that can* cause very poor performance.

Example Hip prosthesis designs that perform poorly for segments of patient populations should not be used.

Example 2 Box and Jones (1992) describe a study whose goal is to *improve* the *taste* of a cake mix that consumers bake under conditions that can vary from the directions printed on the cakebox.

Control factors: amounts of Shortening (S) Flour (F) Egg (E)
(used in the cake mix) *Noise factors*: baking temperature (T); baking time (Z).
(are baking directions)

All Control and Noise factors variables treated as qualitative with two levels:

0 = low level1 = high level • **Response** = $Y_{ijk,lm}$ = taste test rating when $(S, F, E, T, Z) = (ijklm) \in \{0, 1\}^5$ (larger taste test ratings correspond to *better* tasting product)

 $(\mu_{ijk,lm} = \text{mean response of } Y_{ijk,lm})$

Mean Model:

 $\mu_{ijk,lm} = m_0 + S_i + F_j + E_k + T_l + Z_m + (ST)_{il}$

		(T, Z))		
(0,	0) (0	(1, 1) (1)	(1, 0) (1	(-, 1)	(S, F, E)
	$\mu_{000,00}$	$\mu_{000,01}$	$\mu_{000,10}$	$\mu_{000,11}$	(0,0,0)
	$\mu_{001,00}$	$\mu_{001,01}$	$\mu_{001,10}$	$\mu_{001,11}$	(0,0,1)
	$\mu_{010,00}$	$\mu_{010,01}$	$\mu_{010,10}$	$\mu_{010,11}$	(0,1,0)
	$\mu_{011,00}$	$\mu_{011,01}$	$\mu_{011,10}$	$\mu_{011,11}$	(0,1,1)
	$\mu_{100,00}$	$\mu_{100,01}$	$\mu_{100,10}$	$\mu_{100,11}$	(1,0,0)
	$\mu_{101,00}$	$\mu_{101,01}$	$\mu_{101,10}$	$\mu_{101,11}$	(1,0,1)
	$\mu_{101,00}$	$\mu_{101,01}$	$\mu_{101,10}$	$\mu_{101,11}$	
	$\mu_{111.00}$	$\mu_{111.01}$	$\mu_{111.10}$	$\mu_{111.11}$	(1,1,1)

 (\mathbf{m},\mathbf{z})

Question: What recipe to use? A maximin approach

$$\xi_{ijk} = \min_{l, m} \mu_{ijk, lm}$$

be the worst-case performance of the recipe (i, j, k)

Question: What recipe to use? A maximin approach $\xi_{ijk} \equiv \min_{l,m} \mu_{ijk,lm}$

be the worst-case performance of the recipe (i, j, k)

Goal: find recipe that **maximizes** ξ_{ijk}

A 2^{5-1} Fractional Factorial *Experiment* with defining contrast I = SFETZ

	(T,Z)					
((0,0)(0,1)(1,0)(1,1)					(S, F, E)
		1.2	1.6			(0,0,0)
	1.6			4.4		(0,0,1)
	2.2	_	_	6.5		(0,1,0)
	_	4.9	6.1	_		(0,1,1)
	1.3	_	_	1.7		(1,0,0)
		2.6	2.4			(1,0,1)
		3.8	3.5			(1,1,0)
	5.2			6.0		(1,1,1)

2. The General Formulation

Conduct a balanced full or orthogonal fractional factorial experiment with each factor at levels 0 and 1

- Control factors are indexed by i
- Noise factors are indexed by \boldsymbol{j}
- $Y_{i,j}$ denote the response of interest.

Let

 $\mu_{i,j}$ = mean response of $Y_{i,j}$

when

- x_c is at combination i
- x_e is at combination j

Mean Model M

Every mean model for $\mu_{i,j}$ has 3 types of terms:

- control variables (# = p) that interact with noise variables (# = s)
- control variables that have no interactions with noise variables (# = q)
- noise variables that have no interactions with control variables (# = t)

So

$$\begin{array}{l} \text{total $\#$ control variables} = p + q \\ \text{with $$i$} = (i^{\mathcal{I}}, i^{\sim}) \in \mathbb{I} = \{0, 1\}^{p+q} \\ i^{\mathcal{I}} \in \mathbb{I}^{\mathcal{I}} = \{0, 1\}^{p} \\ i^{\sim} \in \mathbb{I}^{\sim} = \{0, 1\}^{q} \end{array} \end{array}$$

and

• total # noise variables =
$$s + t$$

with $\boldsymbol{j} = (\boldsymbol{j}^{\mathcal{I}}, \boldsymbol{j}^{\sim}) \in \mathbb{J} = \{0, 1\}^{s+t}$
 $\boldsymbol{j}^{\mathcal{I}} \in \mathbb{J}^{\mathcal{I}} = \{0, 1\}^{s}$
 $\boldsymbol{j}^{\sim} \in \mathbb{J}^{\sim} = \{0, 1\}^{t}$

Notation	Meaning
$C_1^\mathcal{I},\ldots,C_p^\mathcal{I}$	Control factors that interact w/ Noise factors
$N_1^\mathcal{I}, \dots, N_s^\mathcal{I}$	Noise factors that interact w/ Control factors
$C_1^{\sim}, \ldots, C^{\sim}$	Control factors that don't interact w/ Noise Factors
$N_1^{}, \ldots, N_t^{}$	Noise factors that don't interact w/ Control factors

Model M

$$\mu_{\boldsymbol{i},\boldsymbol{j}}=\mu_{cn}(\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}})+\mu_{c}(\boldsymbol{i}^{\sim})+\mu_{n}(\boldsymbol{j}^{\sim})$$

where

$$egin{aligned} \mu_{cn}(oldsymbol{i}^{\mathcal{I}},oldsymbol{j}^{\mathcal{I}}) &= m_0 + \sum_{Q^{cn}} (\mathbf{C}^{\mathcal{I}}_{i_1},\ldots,\mathbf{C}^{\mathcal{I}}_{i_{p*}}N^{\mathcal{I}}_{j_1},\ldots,N^{\mathcal{I}}_{j_{s*}})_{oldsymbol{i}^{\mathcal{I}},oldsymbol{j}^{\mathcal{I}}} \ \mu_c(oldsymbol{i}^{\sim}) &= \sum_{Q^c} (\mathbf{C}^{\sim}_{i_1},\ldots,\mathbf{C}^{\sim}_{i_{q*}})_{oldsymbol{i}^{\sim}} \ \mu_n(oldsymbol{j}^{\sim}) &= \sum_{Q^n} (N^{\sim}_{i_1},\ldots,N^{\sim}_{i_{t*}})_{oldsymbol{j}^{\sim}} \end{aligned}$$

where Q^{cn} , Q^c , Q^n denote the sets of main effects and interactions present

$$\begin{split} \textbf{Example 2} & (\text{Box and Jones} - \text{continued}) \\ \mu_{ijk,lm} &= m_0 + S_i + F_j + E_k + T_l + Z_m + (ST)_{il} \\ &= \{m_0 + S_i + T_l + (ST)_{il}\} \quad \left[\mu_{cn}(\boldsymbol{i}^{\mathcal{I}}, \boldsymbol{j}^{\mathcal{I}})\right] \\ &+ \{F_j + E_k\} & \left[\mu_c(\boldsymbol{i}^{\sim})\right] \\ &+ \{Z_m\} & \left[\mu_n(\boldsymbol{j}^{\sim})\right] \\ \end{split}$$
has p = 1, q = 2, s = 1, t = 1(i) (j,k) (l) (m) **Definition**: The worst case performance of the engineering design $i \in \mathbb{I}$ is

$$\xi_{m{i}}\equiv\min_{m{j}\in\mathbb{J}}\mu_{m{i},m{j}}$$

Data:

$$Y_{\mathbb{D}} = \mu_{\mathbb{D}} + \epsilon_{\mathbb{D}}$$

where \mathbb{D} is the set of control and noise factor combinations $(\boldsymbol{i,j})$ at which observations are taken, $\mu_{\mathbb{D}}$ satisfies the mean model \mathcal{M} for all $(\boldsymbol{i,j})$, and $\epsilon_{\mathbb{D}}$ are independent $N(0, \sigma^2)$ measurement errors.

Goal: Choose a set of control factors i^* so that $\xi_{i^*} = \max_i \xi_i$

based on a full factorial or fractional experiment with data $Y_{\mathbb{D}}$

3. The Statistical Procedure

Notation

- $\hat{\mu}_{i,j} = \text{OLS of } \mu_{ij}$
- $\overset{\wedge}{\xi}_{i} = \min_{j} \overset{\wedge}{\mu}_{i,j}$ for $i \in \mathbb{I}$
- ordered $\stackrel{\wedge}{\xi_{i}}: \stackrel{\wedge}{\xi_{[1]}} \leq \cdots \leq \stackrel{\wedge}{\xi_{[|\mathbb{I}|]}}$
- $S^2 = \text{moment estimator of } \sigma^2$

Procedure: Select control factor combination *i* if and only if

$$\stackrel{\wedge}{\xi_{i}} \geq \stackrel{\wedge}{\xi_{[|\mathbb{I}|]}} - h S$$

where h is chosen to satisfy

 $P\{\text{Best } i \in \text{selected subset} | \mu, \sigma^2\} \ge 1 - \alpha$

for all μ satisfying model \mathcal{M} and $\sigma^2 > 0$, i.e,

$$\inf_{\boldsymbol{\mu} \in \boldsymbol{\mathcal{M}}, \sigma^2 > 0} P\{CS | \boldsymbol{\mu}, \sigma^2\} \ge 1 - \alpha$$

where CS denotes the event that the best i is in selected subset.

How to Choose h?

We say that μ satisfies Symmetry Condition \mathcal{S} provided

(1) Whenever an (C^I_{i1},..., C^I_{ip*}N^I_{j1},..., N^I_{js*}) involving p* control factors and s* noise factors is present in μ_{cn}(**i**^I, **j**^I), then every other p* + s* factor interaction involving p*control factors and s* noise factors must also be in μ_{cn}(**i**^I, **j**^I)
 (2) Whenever an interaction (C^{*}_{i1},..., C^{*}_{iq*}) involving q* control factors is present in μ_c(**i**[~]), then every other interaction involving q* control factors is present in μ_c(**i**[~])
 (3) Whenever an interaction (N^{*}_{i1},..., N^{*}_{it*}) involving t* noise factors is present in μ_n(**j**[~]), then every other interaction involving t* noise factors must also be present in μ_n(**j**[~])

Theorem Suppose that the model \mathcal{M} satisfies the symmetry condition S, and every main effect and interaction in \mathcal{M} is estimable based on the full factorial or fractional factorial experiment, \mathbb{D} . Then if there exists a sequence $\{\boldsymbol{\nu}_k\}_k$ with each $\boldsymbol{\nu}_k$ a $2^p \times 2^s$ matrix satisfying

$$\boldsymbol{\nu}_k(\boldsymbol{i}^{\mathcal{I}}, \boldsymbol{j}^{\mathcal{I}}) = \mu_{cn}(\boldsymbol{i}^{\mathcal{I}}, \boldsymbol{j}^{\mathcal{I}})$$

(of model \mathcal{M}) and is such that

$$\lim_{k \to \infty} \boldsymbol{\nu}_k = \begin{pmatrix} 0 & +\infty & \cdots & +\infty \\ \vdots & \vdots & \vdots & \vdots \\ 0 & +\infty & \cdots & +\infty \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

then $\mu_k \equiv \nu_k \otimes J_{2^q \times 2^t}$ satisfies

 $[2^{p+q} \times 2^{s+t} = 2^p \times 2^s \otimes 2^q \times 2^t]$

 $\lim_{k \to \infty} P_{\boldsymbol{\mu}_k} \{ \stackrel{\wedge}{\xi_{1}}_{p+q} \geq \stackrel{\wedge}{\xi_{[|\mathbb{I}|]}} - hS|\boldsymbol{\mu}_k, 1 \} = \inf_{\boldsymbol{\mu}, \sigma^2} P\{CS|\boldsymbol{\mu}, \sigma^2\}$

where $\mathbf{1}_{m}^{\mathrm{T}} = (1, \dots, 1)$ denotes the unit vector of length m.

Example (Box and Jones – continued) Recall $\mu_{cn}(i,l) = m_0 + S_i + T_l + (ST)_{il}$ where $i, l \in \{0,1\}$ is a four parameter model and hence every 2×2 ν matrix satisfies $\mu_{cn}(i,l)$. We can take

$$\boldsymbol{\nu}_{k} = \begin{pmatrix} 0 & k \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & +\infty \\ 0 & 0 \end{pmatrix} \text{ so the limiting } \boldsymbol{\mu}_{k} \text{ is}$$

$$\begin{pmatrix} 0 & +\infty \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \otimes J_{2^{2} \times 2^{1}} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} +\infty & +\infty \\ +\infty & +\infty \\ +\infty & +\infty \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ +\infty & +\infty \\ +\infty & +\infty \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(for large k, $\boldsymbol{\nu}_k \otimes J_{2^q \times 2^t}$ is "LFC")

Notice: $\xi_{ijk} = 0$ for all $(i, j, k) \in \{0, 1\}^3$ $\stackrel{\wedge}{\xi}_{0jk}$ involves 2, not 4, means $\stackrel{\wedge}{\mu}_{i,j}$ *Some Intuition:* Let (i) denote the best treatment combination.

$$\inf_{\boldsymbol{\mu}} P\left\{ \stackrel{\wedge}{\xi_{(\boldsymbol{i})}} \geq \max_{\boldsymbol{i}} \stackrel{\wedge}{\xi_{\boldsymbol{i}}} - hS|\boldsymbol{\mu}, \sigma^2 \right\}$$

is attained (in the limit) when

• $\stackrel{\scriptscriptstyle \wedge}{\xi}_{(i)}$ is stochastically as *small* as possible and

• the $\stackrel{\wedge}{\xi_i}$, $i \neq (i)$ are stochastically *large* as possible. But

$$\stackrel{\scriptscriptstyle\wedge}{\xi_{m i}}\,=\min_{m j}\stackrel{\scriptscriptstyle\wedge}{\mu_{m i,m j}}$$

Note

a. $\hat{\xi}_i$ is stochastically large if it involves as $few \stackrel{\wedge}{\mu}_{i,j}$ as possible. This is accomplished by setting as many $\stackrel{\wedge}{\mu}_{i,j}$ as possible equal to $+\infty$, consistent with the mean μ satisfying the model \mathcal{M} .

b. $\hat{\xi}_{(i)}$ is stochastically as *small* as possible if the $\hat{\mu}_{i,j}$ have common mean equal to the max ξ_i

c. When the conditions of the Theorem are satisified.

$$\mathbf{P}_{\boldsymbol{\mu}_{\mathbf{LFC}}}\{\mathbf{CS}\}=\mathbf{P}_{\boldsymbol{\mu}_{\mathbf{0}}}\left\{ \begin{array}{l} \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \hat{\mu}_{00000} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \hat{\mu}_{00100} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \hat{\mu}_{01100} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \hat{\mu}_{01100} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \min\{\hat{\mu}_{10000},\hat{\mu}_{10010}\} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \min\{\hat{\mu}_{10100},\hat{\mu}_{10110}\} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \min\{\hat{\mu}_{1000},\hat{\mu}_{10110}\} - h\,S\\ \min\{\hat{\mu}_{11100},\hat{\mu}_{11110}\} \geq \min\{\hat{\mu}_{11000},\hat{\mu}_{11110}\} - h\,S\\ \min\{\hat{\mu}_{11000},\hat{\mu}_{11110}\} = \min\{\hat{\mu}_{11000},\hat{\mu}_{11110}\} - h\,S\\ \min\{\hat{\mu}_{11000},\hat{\mu}_{11100}\} = \min\{\hat{\mu}_{11000},\hat{\mu}_{11110}\} - h\,S\\ \min\{\hat{\mu}_{11000},\hat{\mu}_{11100}\} = h\,S$$

where the Y_{ijklm} have mean μ_0 = vector of *zero* means, *unit* variances. This probability depends only the means

$ \land $			\
μ_{00000}		—	- \
\wedge		_	
μ_{00100}			
$\stackrel{\wedge}{\mu}_{01000}$		—	—
$\stackrel{\wedge}{\mu}_{01100}$		_	_
∧ 		\wedge	
μ_{10000}	—	μ_{10010}	
$\stackrel{\wedge}{\mu}_{10100}$	_	$\stackrel{\wedge}{\mu}_{10110}$	—
$\stackrel{\wedge}{\mu}_{11000}$		$\stackrel{\wedge}{\mu}_{11010}$	—
\bigwedge		∧ 	_ /
11100		μ_{11110}	/

Example Six factor experiment with variables

Index	Notation	Туре
i	$\mathrm{C}_1^\mathcal{I}$	Interacting Control
j,k	C_1^{\sim}, C_2^{\sim}	Non-Interacting Control
l,m	$N_1^{\mathcal{I}}, N_2^{\mathcal{I}}$	Interacting Noise
n	N_1^{\sim}	Non-Interacting Noise

$$\mu_{ijk,lmn} = \mu_{cn}(i,lm) + \mu_c(jk) + \mu_n(n)$$
 where

$$\mu_{cn}(i, l m) = m_0 + (\mathbf{C}_1^{\mathcal{I}})_i + (N_1^{\mathcal{I}})_l + (N_2^{\mathcal{I}})_m + (\mathbf{C}_1^{\mathcal{I}}N_1^{\mathcal{I}})_{il} + (\mathbf{C}_1^{\mathcal{I}}N_2^{\mathcal{I}})_{im}$$

satisfies symmetry condition $\boldsymbol{\mathcal{S}}$ and

SO

$$\boldsymbol{\nu}_{\boldsymbol{k}} = \begin{pmatrix} 0 & k & k & 2k \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ satisfies the model}$$
$$\rightarrow \begin{pmatrix} 0 & +\infty & +\infty & +\infty \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & +\infty & +\infty & +\infty \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes J_{2^{2} \times 2^{1}} \text{ is the LFC}$$

4. The Caveats

a. Determining the existence of ν_k :

$$\boldsymbol{\nu}_k \rightarrow \begin{pmatrix} 0 & +\infty & \cdots & +\infty \\ \vdots & \vdots & \vdots \\ 0 & +\infty & \cdots & +\infty \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

can be done by solving the linear programming problem $\max w$

$$\begin{split} \boldsymbol{s.t.} \\ \boldsymbol{\nu}(\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}) &= 0 \text{ for all } (\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}) \in \mathcal{Z} \\ w &\leq \boldsymbol{\nu}(\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}) \text{ for all } (\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}) \notin \mathcal{Z} \\ \sum_{\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}} (\mathbf{C}_{i_{1}}^{\mathcal{I}},\ldots,\mathbf{C}_{i_{p*}}^{\mathcal{I}}N_{j_{1}}^{\mathcal{I}},\ldots,N_{j_{s*}}^{\mathcal{I}})_{\boldsymbol{i}^{\mathcal{I}},\boldsymbol{j}^{\mathcal{I}}} = 0 \text{ for all } \\ (i_{1},\ldots,i_{p*},j_{1},\ldots,j_{q*}) \end{split}$$

where \mathcal{Z} are row-col combinations that must be in the limit, and $\nu(\mathbf{i}^{\mathcal{I}}, \mathbf{j}^{\mathcal{I}})$ is shorthand notation for

$$m_0 + \sum_{Q^{cn}} (\mathbf{C}_{i_1}^{\mathcal{I}}, \dots, \mathbf{C}_{i_{p*}}^{\mathcal{I}} N_{j_1}^{\mathcal{I}}, \dots, N_{j_{s*}}^{\mathcal{I}})_{\boldsymbol{i}^{\mathcal{I}}, \boldsymbol{j}^{\mathcal{I}}}$$

b. What if there is no $\boldsymbol{\nu}_k$ with $\begin{pmatrix} 0 & +\infty & \cdots & +\infty \\ \vdots & \vdots & \vdots & \vdots \\ 0 & +\infty & \cdots & +\infty \\ 0 & 0 & 0 & 0 \end{pmatrix}$

as limit? We give a lower bound which has the form of a minimum of a finite set of probabilities computed with zero mean and unit variance, of which the Box & Jones expression is a prototype.

c. Computing h: our recommendation - simulation, eg, Box & Jones example requires the $100 \times (1 - \alpha)\%$ quantile of the distribution of

d. Bounded Means: Suppose that $L \le \mu_{i,j} \le U$ for all means $\mu_{i,j}$. Then the LFC in Theorem is given by

$$\begin{pmatrix} 0 & U-L & \cdots & U-L \\ \vdots & \vdots & \vdots & \vdots \\ 0 & U-L & \cdots & U-L \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes J_{|\mathcal{I}^{\sim}| \times |\mathcal{J}^{\sim}|}$$

5. Conclusions

a. These results allow a wide variety of QC experiments to be analysed using subset selection methodology to find the "best" product or process

b. Weighted Mean Robustness

Assume that there is *known* a distribution over the noise variables that characterizes some field use (production setting), i.e., there are known non-negative weights w_j with $\sum_{j \in \mathcal{J}} w_j = 1$, so that

$$\mu_i^w = \sum_{\boldsymbol{j} \in \mathcal{J}} \mu_{\boldsymbol{i}, \boldsymbol{j}} w_{\boldsymbol{j}}$$

is the mean response over multiple uses of the product design i in the field.

Goal: Choose the control variable combination i^* for which

$$\mu^w_{\boldsymbol{i}^*} = \max_{\boldsymbol{q}} \ \mu^w_{\boldsymbol{q}}$$

The solution to the problem of finding a mean-robust control variable combination is *simpler* than that of finding a maximin-robust control variable combination.