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Frequentist stepwise multiple testing procedures

Comparing the ordered test statistics or associated p-values with a set of critical
values in a stepwise fashion towards identifying the set of true and false null
hypotheses.

• Step-down methods – starts with testing the most significant hypothesis and
continues until an acceptance occurs or all hypotheses are rejected.

• Step-up methods – starts with testing the least significant hypothesis and
continues until a rejection occurs or all the hypotheses are accepted.

• Generalized step-up-down method of order r (Tamhane, Liu, and Dunnett
1998) – starts with testing the rth least significant hypothesis.

B acceptance =⇒ test continues in step-up manner

B rejection =⇒ test continues in step-down manner
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Bayesian multiplicity adjustment

• Why multiplicity adjustment for Bayesians

B Berry (1988)

B Breslow (1990)

B Berry and Hochberg (1999)

• Bayesian multiple comparisons procedures

B Duncan (1965): Bayesian decision-theoretic approach

B Waller and Duncan (1969): hyper-prior distribution for the unknown
ratio of between-to-within variances

B Tamhane and Gopal (1993): comparisons of treatments with a control
under additive overall loss function

B Westfall, Johnson and Utts (1997): prior probability adjustment

B Gopalan and Berry (1998): Dirichlet process prior for all configurations of
hypotheses

B Shaffer (1999): semi-Bayesian method
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Current status of Bayesian testing of multiple hypotheses

• Bayesian hypothesis testing and model selection

B Pairwise Bayes factors – Berger (1999); Berger and Pericchi (1996, 2001)

B Multiple and partial Bayes factors – Bertolino, Piccinato, and Racugno
(1995)

• Features of existing Bayesian testing procedures

B Single step

B Large number of families (configurations)

B Intractable configurations of hypotheses with large family of hypotheses

B computationally extensive
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Bayesian Hypothesis Testing (I)

• Distributional setups

B Let X = {X1, . . . ,Xk} be independent samples from k populations, each
with pdf

f(xi|θi) =
∏

1≤j≤ni

f(xi|θi), i = 1, . . . , k

B Let the θi, i = 1, . . . , k,be independent with the first stage prior π1(θi|λ)
and the second stage prior for λ = (λ1, λ2) being
π2(λ) = π21(λ1|λ2)π22(λ2).

B Hi : θ ∈ Θi against H̄i : θ ∈ Θ̄i, for i = 1, . . . , k, where θ = {θ1, . . . , θk},
Θi ∩ Θ̄i = ∅ and Θi ∪ Θ̄i = Ω.

• Posterior probability of Hi given X

P (Hi|X) =
∫

Θi

π(θ|X)dθ
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Bayesian Hypothesis Testing (II)

• Posterior probability of Hi given X (cont’d)
where

π(θ|X) = [m(X)]−1f(X|θ)π(θ),

f(X|θ) =
∏

1≤i≤k

f(Xi|θi),

π(θ) =
∫ ∏

1≤i≤k

π1(θi|λ)π2(λ)dλ,

and

m(X) =
∫

Ω

f(X|θ)π(θ)dθ.

• P (H̄i|X) = 1− P (Hi|X)

• Marginal Bayes factor of Hi

Bi =
P (Hi|X)

1− P (Hi|X)
.
1− πi0

πi0
,
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Bayesian Hypothesis Testing (III)

• Marginal Bayes factor of Hi (cont’d)
with

πi0 =
∫

Θi

π(θ)dθ.

• For testing H = ∩k
i=1Hi against H̄ = ∪k

i=1H̄i,

B =

∫
H

π(θ|X)dθ

1− ∫
H

π(θ|X)dθ
· 1− ∫

H
π(θ)dθ∫

H
π(θ)dθ

.

• If λ = (λ1, λ2) is known

B =

∏
1≤i≤k Bi∏

1≤i≤k(1 + Bi)−
∏

1≤i≤k Bi
· 1−∏

1≤i≤k πi0∏
1≤i≤k πi0

.

• If πi0 = 1− πi0 for all i’s

B = (2k − 1)

∏
1≤i≤k Bi∏

1≤i≤k(1 + Bi)−
∏

1≤i≤k Bi
.
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A Bayesian Stepwise Simultaneous Testing Procedure (I)

• Let B(1) ≤ · · · ≤ B(k) be the ordered values of the marginal Bayes factors
B1, . . . , Bk, and B(j) correspond to H(j).

• If the strength of evidence for H(j) is weak, then the strength of evidence for
H(i) should be weaker for all i < j;

• If the strength of evidence for H(j) is strong, then the strength of evidence
for H(l) should be stronger for all l > j.

• (
k
r

)
: H̄(1) · · · H̄(r)H(r+1) · · ·H(k)

⇓{
H(1), . . . , H(k)

}
,
{
H̄(1),H(2), . . . ,H(k)

}
, . . . ,{

H̄(1), . . . , H̄(k−1),H(k)

}
,
{
H̄(1), . . . , H̄(k)

}
.

• Define
H(r) =

{∩r
i=1H̄(i)

} ∩ {∩k
i=r+1H(i)

}

for r = 0, 1, . . . , k with H̄0 = Ω.
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A Bayesian Stepwise Simultaneous Testing Procedure (II)

• Stepwise Bayes factor for H(r) to any of H(r+1), . . . ,H(k)

B(r) =
P (H(r)|X)∑

r+1≤i≤k P (H(i)|X)
·
∑

r+1≤i≤k π(H(i))

π(H(r))
(1)

where π(H(r)) is the prior probability of H(r), r = 0, 1, . . . , k − 1.

• The proposed procedure
Step 0. Start with r = 0, i.e., the intersection of all the k null hypotheses,
calculate B(0). If B(0) > c, then accept H(0) = ∩k

i=1H(i) and stop; if
B(0) ≤ c, then reject H(1) go to the next step.
· · ·
Step r. Calculate B(r). If B(r) > c, then accept H(r) and stop; if B(r) ≤ c,
then reject all H(i) for i ≤ r + 1 and go to the next step.
· · ·
Step k-1. Calculate B(k−1). If B(k−1) > c, then accept H(k−1) and stop; if
B(k−1) ≤ c, then reject all H(i) for i ≤ k.

• The choice of c: Berger, Boukai, and Wang (1997).
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Some features of the proposed procedure

• Step-down multiple testing procedure

• Two main steps

B Specification of target families of true and false null hypotheses

B stepwise search for the most plausible one of these families

• Considerable reduction in the size of set of families from 2k to k + 1

• Systematic improvement of the search for the “right” family by
incorporating information gathered at every step

• Practically feasible in terms of keeping track of various configurations

• Computationally economic
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Testing multiple point null hypotheses (I)

• Hi : θi = θi0, i = 1, . . . , k, against H̄i : θi 6= θi0, i = 1, . . . , k.

• Conditional prior given λ

π1(θi|λ) = πi0I(θi = θi0) + (1− πi0)g1(θi|λ)I(θi 6= θi0).

• If θi0 is known

B Marginal Bayes factor of Hi

P (Hi|X) = [m(X)]−1
∫ [

πi0f(Xi|θi0)
∏(−i)

1≤j≤k

{
πj0f(Xj |θj0)

+(1− πj0)f∗(Xj |λ)
}]

π2(λ)dλ, (2)

where f∗(Xj |λ) =
∫

f(Xj |θj)g1(θj |λ)dθj , j = 1, . . . , k,

m(X) =
∫ [ ∏

1≤j≤k

{
πj0f(Xj |θj0) + (1− πj0)f∗(Xj |λ)

}]
π2(λ)dλ,
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Testing multiple point null hypotheses (II)

• If θi0 is known (cont’d)

B Posterior probability of H(r) given X

P (H(r)|X) = [m(X)]−1

∫ [ ∏

1≤i≤r

{
(1− πi0)f∗(Xi|λ)

}

∏

r+1≤i≤k

{
πi0f(Xi|θi0

}]
π2(λ)dλ, (3)

B Stepwise Bayes factor for testing H(r)

B(r) =
P (H(r)|X)∑

r+1≤j≤k P (H(j)|X)
·

∑

r+1≤j≤k


 ∏

r+1≤i≤j

1− πi0

πi0


 . (4)

B If λ = (λ1, λ2) is known

B(r) =


 ∑

r+1≤j≤k


 ∏

r+1≤i≤j

1− πi0

πi0

1
Bi






−1 

 ∑

r+1≤j≤k


 ∏

r+1≤i≤j

1− πi0

πi0





 . (5)
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Testing multiple point null hypotheses (III)

• If θ10 = · · · = θk0 ≡ θ0 and θ0 is an unknown parameter of control group

B Posterior probability of Hi given X

P (Hi|X) =
1

m0(X)

∫ [ ∫
f(X0|θ0)πi0f(Xi|θ0)

∏(−i)

1≤j≤k

{
πj0f(Xj |θ0)

+(1− πj0)f∗(Xj |λ)
}
π1(θ0|λ)dθ0

]
π2(λ)dλ, (6)

where

m0(X) =
∫ [ ∫

f(X0|θ0)
∏

1≤j≤k

{
πj0f(Xj |θ0) + (1− πj0)f∗(Xj |λ)

}

π1(θ0|λ)dθ0

]
π2(λ)dλ.

B Posterior probability of H(r) given X

P (H(r)|X) = [m0(X)]−1

∫∫ [
f(X0|θ0)

{ ∏

1≤j≤r

(1− πj0)f∗(Xj |λ)

∏

r+1≤j≤k

πj0f(Xj |θ0)
}

π1(θ0|λ)dθ0

]
π2(λ)dλ. (7)
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Testing Multiple One-Sided Null Hypotheses (I)

• Hi : θi ≤ θi0, i = 1, . . . , k against H̄i : θi > θi0, i = 1, . . . , k.

• If θi0 is known

B Posterior probability of Hi and H(r) given X are, respectively

P (Hi|X) = [m∗(X)]−1

∫ [
f∗0 (Xi|λ)

∏(−i)

1≤j≤k

{
f∗(Xj |λ)

}]
π2(λ)dλ. (8)

P (H(r)|X) = [m∗(X)]−1

∫ [ ∏

1≤j≤r

{
f∗1 (Xj |λ)

} ∏

r+1≤j≤k

{
f∗0 (Xj |λ)

}]
π2(λ)dλ, (9)

where

m∗(X) =
∫ [ ∏

1≤j≤k

{
f∗(Xj |λ)

}]
π2(λ)dλ, f∗(Xj |λ) =

∫
f(Xj |θj)π1(θj |λ)dθj ,

f∗0 (Xj |λ) =
∫

θj≤θj0

f(Xj |θj)π1(θj |λ)dθj , and f∗1 (Xj |λ) =
∫

θj>θj0

f(Xj |θj)π1(θj |λ)dθj .
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Testing Multiple One-Sided Null Hypotheses (II)

• If θi0 is known (cont’d)

B Stepwise Bayes factor for H(r) given X

B(r) =
P (H(r)|X)∑

r+1≤i≤k P (H(i)|X)
·
∑

r+1≤i≤k π0(H(i))

π0(H(r))
, (10)

where

π0(H(r)) =
∫ [ ∏

1≤i≤r

{∫

θi>θi0

π1(θi|λ)dθi

} ∏

r+1≤i≤k

{∫

θi≤θi0

π1(θi|λ)dθi

}]
π2(λ)dλ.

• If θ10 = · · · = θk0 ≡ θ0 and θ0 is an unknown parameter of control group

B posterior probability of Hi

P (Hi|X) = [m∗
0(X)]−1

∫ [ ∫
f(X0|θ0)f∗0 (Xi|λ)π1(θ0|λ)dθ0

∏(−i)

1≤j≤k

{f∗(Xj |λ)}
]
π2(λ)dλ (11)
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Testing Multiple One-Sided Null Hypotheses (III)

• If θi0 is unknown and θ10 = · · · = θk0 ≡ θ0

B posterior probability of Hi (cont’d)
where

m∗
0(X) =

∫ [ ∏

0≤j≤k

{f∗(Xj |λ)}
]
π2(λ)dλ.

B Posterior probability of H(r) given X

P (H(r)|X) = [m∗
0(X)]−1

∫ [ ∫
f(X0|θ0)

∏

1≤j≤r

{f∗1 (Xj |λ)}
∏

r+1≤j≤k

{
f∗0 (Xj |λ)

}

π1(θ0|λ)dθ0

]
π2(λ)dλ. (12)
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Multiple Testing with A Standard Using Point Null

Hypotheses (I)

• Xij ∼ N(θi, σ
2)

• Prior density g1(θi|ξ, σ2) = N(µ, ξσ2), for some known µ and ξ, with
π2(σ2) ∝ (σ2)−1.

• Null hypotheses Hi : θi = θ0 versus H̄i : θi 6= θ0, i = 1, . . . , k, for some known
θ0.

Example 1. Mee, Shah, and Lefante (1987) (MSL) present a method for
comparing k independent means with a known standard [data from Romano
(1977)].

• Ten ball bearings are randomly selected from each of four production lines.

• MSL employ their procedure and conclude that process 2 is out of control.
By applying the proposed Bayesian stepwise simultaneous testing procedure
to the data with µ = 1 mm, we come to the same conclusion (Table 1)
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Multiple Testing with A Standard Using Point Null

Hypotheses (II)

Table 1: Summary Statistics and Marginal and Stepwise Bayes Factors

for Ball Bearing Data

Process Mean Sample Variance n Bi r B(r)

2 1.406 0.18345 10 0.091 0 0.044

1 1.194 0.08392 10 0.734 1 1.978

4 1.176 0.05920 10 0.945 2 2.629

3 1.129 0.17021 10 1.878 3 22.512
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Multiple Testing with An Unknown Control Using Point

Null Hypotheses (I)

• Prior density π1(θi|ξ, σ2) = N(µ, ξσ2), i = 0, . . . , k. and π2(σ2) ∝ (σ2)−1.

• Null hypotheses Hi : θi = θ0 versus H̄i : θi 6= θ0, i = 1, . . . , k, for unknown
parameter θ0 of commonly referenced group.

Example 2. [Steele, R. et al (1980)] Toxicological effects of six different
chemical solutions on young mice

• Comparisons of the six solutions with the control (group 0) and not on the
comparisons among the six solutions.

• Dunnett’s two-sided single-step confidence interval method: solutions 3 and
6 are significantly more toxic than the control in inhibiting mouse growth
[Westfall, Tobias, Rom, Wolfinger, and Hochberg (1999), pp54-56].

• Our method with prior mean µ = 90 and ξ = 2 concludes that groups 3, 6,
and 2 are significantly different from the control in terms of toxicological
effects (Table 2).
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Multiple Testing with An Unknown Control Using Point

Null Hypotheses (IV)

Table 2: Summary Statistics and Marginal and Stepwise Bayes Factors

for Mouse Growth Data

Group Mean Std. Dev. n Bi r B(r)

3 72.14 8.41 4 0.02 0 0.23

6 74.24 7.81 4 0.03 1 0.34

2 80.48 12.68 4 0.12 2 0.81

5 84.68 18.35 4 0.28 3 1.25

4 91.88 9.44 4 0.94 4 2.53

1 95.90 23.89 4 1.57 5 5.21

0 105.38 13.44 4
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Multiple Testing with An Unknown Control Using

One-Sided Null Hypotheses (I)

• Hi : θi ≤ θ0 versus Hi : θi > θ0, i = 1, · · · , k, with θ0 being the unknown
mean of the control group.

• Prior densities IG(a/2, b/2) for σ2 and ξ.

Example 3. [White and Froeb (1980)] The effect of smoking on pulmonary
health:

• Subjects were assigned, based on their smoking habits, to one of six groups
— non-smokers (NS), passive smokers (PS), non-inhaling smokers (NI), light
smokers (LS), moderate smokers (MS), and heavy smokers (HS).

• A sample of 1050 female subjects, 50 from non-inhaling group and 200 from
each of the remaining groups, were selected and data on their pulmonary
function (forced vital capacity, FVC) were recorded.

• Smoking effects on individual’s pulmonary health relative to non-smokers.

• Dunnett’s one-sided method: there is a significantly difference in mean FVC
between non-smokers and light, moderate and heavy smokers [Hsu (1996)].

• The proposed Bayesian procedure with µ = 3.30: same conclusion (Table 3).
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Multiple Testing with An Unknown Control Using

One-Sided Null Hypotheses (III)

Table 3: Summary Statistics and Marginal and Stepwise Bayes Factors

for Smoking and Pulmonary Health Data

Group (#) Mean Std. Dev. n Bi r B(r)

HS (5) 2.55 0.38 200 0.01 0 0.33

MS (4) 2.80 0.38 200 0.04 1 0.85

LS (3) 3.15 0.39 200 0.22 2 0.97

NI (2) 3.19 0.52 50 0.49 3 1.24

PS (1) 3.23 0.46 200 1.07 4 1.43

NS (0) 3.35 0.63 200
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Remarks and Conclusions

• Equivalent results to those obtained from frequentist methods.

• Multiple testing involving normal means with unequal variances

• Simultaneous testing of means and variances from multiple normal
populations

• Wide scope of applications: Applicable to many multiple testing problems
with a non-hierarchical family of hypotheses

• Bayesian false discovery rate (FDR)

• Bayesian step-up procedure

• Bayesian generalized step-up-down procedure

• Bayesian credible interval approach

• Robustness: intrinsic Bayes factor and fractional Bayes factor
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