A Bayesian Approach to Stepwise Simultaneous Testing

Jie Chen

Merck Research Laboratories, WP37C-305 West Point, PA 19486, USA

Sanat K. Sarkar Temple University Philadelphia, PA 19122, USA http://www.sbm.temple.edu/~sanat/BSST.pdf

The Third International Conference on Multiple Comparisons Bethesda, Maryland, USA, August 5-7, 2002

August 7, 2002

1

Outline

- Introduction
- Bayesian hypothesis testing
- A Bayesian stepwise simultaneous testing procedure
 - \triangleright The proposed procedure
 - \triangleright Testing multiple point null hypotheses
 - \triangleright Testing multiple one-sided null hypotheses
- Applications to normal data
 - \triangleright Multiple testing with a standard using point null hypotheses
 - \triangleright Multiple testing with an unknown control using point null hypotheses
 - \triangleright Multiple testing with an unknown control using one-sided null hypotheses
- Remarks and conclusions

Frequentist stepwise multiple testing procedures

Comparing the ordered test statistics or associated *p*-values with a set of critical values in a stepwise fashion towards identifying the set of true and false null hypotheses.

- Step-down methods starts with testing the most significant hypothesis and continues until an acceptance occurs or all hypotheses are rejected.
- Step-up methods starts with testing the least significant hypothesis and continues until a rejection occurs or all the hypotheses are accepted.
- Generalized step-up-down method of order r (Tamhane, Liu, and Dunnett 1998) starts with testing the rth least significant hypothesis.
 - ightarrow acceptance \Longrightarrow test continues in step-up manner
 - ightarrow rejection \implies test continues in step-down manner

Bayesian multiplicity adjustment

- Why multiplicity adjustment for Bayesians
 - \triangleright Berry (1988)
 - \triangleright Breslow (1990)
 - \triangleright Berry and Hochberg (1999)
- Bayesian multiple comparisons procedures
 - \triangleright Duncan (1965): Bayesian decision-theoretic approach
 - ▷ Waller and Duncan (1969): hyper-prior distribution for the unknown ratio of between-to-within variances
 - ▷ Tamhane and Gopal (1993): comparisons of treatments with a control under additive overall loss function
 - \triangleright Westfall, Johnson and Utts (1997): prior probability adjustment
 - ▷ Gopalan and Berry (1998): Dirichlet process prior for all configurations of hypotheses
 - \triangleright Shaffer (1999): semi-Bayesian method

Current status of Bayesian testing of multiple hypotheses

- Bayesian hypothesis testing and model selection
 - ▷ Pairwise Bayes factors Berger (1999); Berger and Pericchi (1996, 2001)
 - Multiple and partial Bayes factors Bertolino, Piccinato, and Racugno (1995)
- Features of existing Bayesian testing procedures
 - \triangleright Single step
 - \triangleright Large number of families (configurations)
 - ▷ Intractable configurations of hypotheses with large family of hypotheses
 - \triangleright computationally extensive

Bayesian Hypothesis Testing (I)

- Distributional setups
 - \triangleright Let $\mathbf{X} = {\mathbf{X}_1, \dots, \mathbf{X}_k}$ be independent samples from k populations, each with pdf

$$f(\mathbf{x}_i|\theta_i) = \prod_{1 \le j \le n_i} f(x_i|\theta_i), \quad i = 1, \dots, k$$

- $\triangleright \text{ Let the } \theta_i, i = 1, \dots, k, \text{be independent with the first stage prior } \pi_1(\theta_i | \lambda)$ and the second stage prior for $\lambda = (\lambda_1, \lambda_2)$ being $\pi_2(\lambda) = \pi_{21}(\lambda_1 | \lambda_2) \pi_{22}(\lambda_2).$
- $\vdash H_i : \boldsymbol{\theta} \in \Theta_i \text{ against } \bar{H}_i : \boldsymbol{\theta} \in \bar{\Theta}_i, \text{ for } i = 1, \dots, k, \text{ where } \boldsymbol{\theta} = \{\theta_1, \dots, \theta_k\}, \\ \Theta_i \cap \bar{\Theta}_i = \emptyset \text{ and } \Theta_i \cup \bar{\Theta}_i = \Omega.$
- Posterior probability of H_i given **X**

$$P(H_i|\mathbf{X}) = \int_{\Theta_i} \pi(\boldsymbol{\theta}|\mathbf{X}) d\boldsymbol{\theta}$$

Bayesian Hypothesis Testing (II)

• Posterior probability of H_i given **X** (cont'd) where

$$\pi(\boldsymbol{\theta}|\mathbf{X}) = [m(\mathbf{X})]^{-1} f(\mathbf{X}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}),$$
$$f(\mathbf{X}|\boldsymbol{\theta}) = \prod_{1 \le i \le k} f(\mathbf{X}_i|\theta_i),$$
$$\pi(\boldsymbol{\theta}) = \int \prod_{1 \le i \le k} \pi_1(\theta_i|\lambda) \pi_2(\lambda) d\lambda,$$

and

$$m(\mathbf{X}) = \int_{\Omega} f(\mathbf{X}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

- $P(\bar{H}_i|\mathbf{X}) = 1 P(H_i|\mathbf{X})$
- Marginal Bayes factor of H_i

$$B_i = \frac{P(H_i | \mathbf{X})}{1 - P(H_i | \mathbf{X})} \cdot \frac{1 - \pi_{i0}}{\pi_{i0}},$$

Bayesian Hypothesis Testing (III)

• Marginal Bayes factor of H_i (cont'd) with

$$\pi_{i0} = \int_{\Theta_i} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

• For testing
$$H = \bigcap_{i=1}^{k} H_i$$
 against $\overline{H} = \bigcup_{i=1}^{k} \overline{H}_i$,

$$B = \frac{\int_{H} \pi(\boldsymbol{\theta} | \mathbf{X}) d\boldsymbol{\theta}}{1 - \int_{H} \pi(\boldsymbol{\theta} | \mathbf{X}) d\boldsymbol{\theta}} \cdot \frac{1 - \int_{H} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}}{\int_{H} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}}.$$

• If
$$\lambda = (\lambda_1, \lambda_2)$$
 is known

$$B = \frac{\prod_{1 \le i \le k} B_i}{\prod_{1 \le i \le k} (1 + B_i) - \prod_{1 \le i \le k} B_i} \cdot \frac{1 - \prod_{1 \le i \le k} \pi_{i0}}{\prod_{1 \le i \le k} \pi_{i0}}.$$

• If
$$\pi_{i0} = 1 - \pi_{i0}$$
 for all *i*'s

$$B = (2^k - 1) \frac{\prod_{1 \le i \le k} B_i}{\prod_{1 \le i \le k} (1 + B_i) - \prod_{1 \le i \le k} B_i}.$$

A Bayesian Stepwise Simultaneous Testing Procedure (I)

- Let $B_{(1)} \leq \cdots \leq B_{(k)}$ be the ordered values of the marginal Bayes factors B_1, \ldots, B_k , and $B_{(j)}$ correspond to $H_{(j)}$.
- If the strength of evidence for $H_{(j)}$ is weak, then the strength of evidence for $H_{(i)}$ should be weaker for all i < j;
- If the strength of evidence for $H_{(j)}$ is strong, then the strength of evidence for $H_{(l)}$ should be stronger for all l > j.

•
$$\binom{k}{r}$$
: $\bar{H}_{(1)} \cdots \bar{H}_{(r)} H_{(r+1)} \cdots H_{(k)}$
 \Downarrow
 $\{H_{(1)}, \dots, H_{(k)}\}, \{\bar{H}_{(1)}, H_{(2)}, \dots, H_{(k)}\}, \dots, \{\bar{H}_{(1)}, \dots, \bar{H}_{(k-1)}, H_{(k)}\}, \{\bar{H}_{(1)}, \dots, \bar{H}_{(k)}\}.$

• Define

$$H^{(r)} = \left\{ \bigcap_{i=1}^{r} \bar{H}_{(i)} \right\} \cap \left\{ \bigcap_{i=r+1}^{k} H_{(i)} \right\}$$

for $r = 0, 1, \ldots, k$ with $\overline{H}_0 = \Omega$.

A Bayesian Stepwise Simultaneous Testing Procedure (II)

• Stepwise Bayes factor for $H^{(r)}$ to any of $H^{(r+1)}, \ldots, H^{(k)}$

$$B^{(r)} = \frac{P(H^{(r)}|\mathbf{X})}{\sum_{r+1 \le i \le k} P(H^{(i)}|\mathbf{X})} \cdot \frac{\sum_{r+1 \le i \le k} \pi(H^{(i)})}{\pi(H^{(r)})}$$
(1)

where $\pi(H^{(r)})$ is the prior probability of $H^{(r)}$, $r = 0, 1, \ldots, k - 1$.

• The proposed procedure

. . .

Step 0. Start with r = 0, i.e., the intersection of all the k null hypotheses, calculate $B^{(0)}$. If $B^{(0)} > c$, then accept $H^{(0)} = \bigcap_{i=1}^{k} H_{(i)}$ and stop; if $B^{(0)} \leq c$, then reject $H_{(1)}$ go to the next step.

Step r. Calculate $B^{(r)}$. If $B^{(r)} > c$, then accept $H^{(r)}$ and stop; if $B^{(r)} \le c$, then reject all $H_{(i)}$ for $i \le r+1$ and go to the next step.

Step k-1. Calculate $B^{(k-1)}$. If $B^{(k-1)} > c$, then accept $H^{(k-1)}$ and stop; if $B^{(k-1)} \leq c$, then reject all $H_{(i)}$ for $i \leq k$.

• The choice of c: Berger, Boukai, and Wang (1997).

Some features of the proposed procedure

- Step-down multiple testing procedure
- Two main steps
 - \triangleright Specification of target families of true and false null hypotheses
 - \triangleright stepwise search for the most plausible one of these families
- Considerable reduction in the size of set of families from 2^k to k+1
- Systematic improvement of the search for the "right" family by incorporating information gathered at every step
- Practically feasible in terms of keeping track of various configurations
- Computationally economic

Testing multiple point null hypotheses (I)

- $H_i: \theta_i = \theta_{i0}, i = 1, \dots, k$, against $\bar{H}_i: \theta_i \neq \theta_{i0}, i = 1, \dots, k$.
- Conditional prior given λ

$$\pi_1(\theta_i|\lambda) = \pi_{i0}I(\theta_i = \theta_{i0}) + (1 - \pi_{i0})g_1(\theta_i|\lambda)I(\theta_i \neq \theta_{i0}).$$

- If θ_{i0} is known
 - \triangleright Marginal Bayes factor of H_i

$$P(H_i|\mathbf{X}) = [m(\mathbf{X})]^{-1} \int \left[\pi_{i0} f(\mathbf{X}_i|\theta_{i0}) \prod_{1 \le j \le k}^{(-i)} \left\{ \pi_{j0} f(\mathbf{X}_j|\theta_{j0}) + (1 - \pi_{j0}) f^*(\mathbf{X}_j|\lambda) \right\} \right] \pi_2(\lambda) d\lambda, \qquad (2)$$

where $f^*(\mathbf{X}_j|\lambda) = \int f(\mathbf{X}_j|\theta_j) g_1(\theta_j|\lambda) d\theta_j, \quad j = 1, \dots, k,$

$$m(\mathbf{X}) = \int \left[\prod_{1 \le j \le k} \left\{ \pi_{j0} f(\mathbf{X}_j | \theta_{j0}) + (1 - \pi_{j0}) f^*(\mathbf{X}_j | \lambda) \right\} \right] \pi_2(\lambda) d\lambda,$$

Testing multiple point null hypotheses (II)

• If θ_{i0} is known (cont'd)

 $\,\triangleright\,$ Posterior probability of $H^{(r)}$ given ${\bf X}$

$$P(H^{(r)}|\mathbf{X}) = [m(\mathbf{X})]^{-1} \int \left[\prod_{1 \le i \le r} \left\{ (1 - \pi_{i0}) f^*(\mathbf{X}_i|\lambda) \right\} \right] \prod_{r+1 \le i \le k} \left\{ \pi_{i0} f(\mathbf{X}_i|\theta_{i0}) \right\} \pi_2(\lambda) d\lambda, \qquad (3)$$

 \triangleright Stepwise Bayes factor for testing $H^{(r)}$

$$B^{(r)} = \frac{P(H^{(r)}|\mathbf{X})}{\sum_{r+1 \le j \le k} P(H^{(j)}|\mathbf{X})} \cdot \sum_{r+1 \le j \le k} \left(\prod_{r+1 \le i \le j} \frac{1 - \pi_{i0}}{\pi_{i0}}\right).$$
(4)

 \triangleright If $\lambda = (\lambda_1, \lambda_2)$ is known

$$B^{(r)} = \left[\sum_{r+1 \le j \le k} \left(\prod_{r+1 \le i \le j} \frac{1 - \pi_{i0}}{\pi_{i0}} \frac{1}{B_i}\right)\right]^{-1} \left[\sum_{r+1 \le j \le k} \left(\prod_{r+1 \le i \le j} \frac{1 - \pi_{i0}}{\pi_{i0}}\right)\right].$$
 (5)

Testing multiple point null hypotheses (III)

• If $\theta_{10} = \cdots = \theta_{k0} \equiv \theta_0$ and θ_0 is an unknown parameter of control group \triangleright Posterior probability of H_i given **X**

$$P(H_i|\mathbf{X}) = \frac{1}{m_0(\mathbf{X})} \int \left[\int f(\mathbf{X}_0|\theta_0) \pi_{i0} f(\mathbf{X}_i|\theta_0) \prod_{1 \le j \le k}^{(-i)} \left\{ \pi_{j0} f(\mathbf{X}_j|\theta_0) + (1 - \pi_{j0}) f^*(\mathbf{X}_j|\lambda) \right\} \pi_1(\theta_0|\lambda) d\theta_0 \right] \pi_2(\lambda) d\lambda, \qquad (6)$$

where

$$m_0(\mathbf{X}) = \int \left[\int f(\mathbf{X}_0 | \theta_0) \prod_{1 \le j \le k} \left\{ \pi_{j0} f(\mathbf{X}_j | \theta_0) + (1 - \pi_{j0}) f^*(\mathbf{X}_j | \lambda) \right\} \right.$$
$$\pi_1(\theta_0 | \lambda) d\theta_0 \left] \pi_2(\lambda) d\lambda.$$

 $\,\triangleright\,$ Posterior probability of $H^{(r)}$ given ${\bf X}$

$$P(H^{(r)}|\mathbf{X}) = [m_0(\mathbf{X})]^{-1} \iint \left[f(\mathbf{X}_0|\theta_0) \left\{ \prod_{1 \le j \le r} (1 - \pi_{j0}) f^*(\mathbf{X}_j|\lambda) \right. \right. \\ \left. \prod_{r+1 \le j \le k} \pi_{j0} f(\mathbf{X}_j|\theta_0) \right\} \pi_1(\theta_0|\lambda) d\theta_0 \left] \pi_2(\lambda) d\lambda.$$
(7)

Testing Multiple One-Sided Null Hypotheses (I)

- $H_i: \theta_i \leq \theta_{i0}, i = 1, \dots, k$ against $\overline{H}_i: \theta_i > \theta_{i0}, i = 1, \dots, k$.
- If θ_{i0} is known
 - \triangleright Posterior probability of H_i and $H^{(r)}$ given **X** are, respectively

$$P(H_i|\mathbf{X}) = [m^*(\mathbf{X})]^{-1} \int \left[f_0^*(\mathbf{X}_i|\lambda) \prod_{1 \le j \le k} (-i) \left\{ f^*(\mathbf{X}_j|\lambda) \right\} \right] \pi_2(\lambda) d\lambda.$$
(8)

$$P(H^{(r)}|\mathbf{X}) = [m^*(\mathbf{X})]^{-1} \int \left[\prod_{1 \le j \le r} \left\{ f_1^*(\mathbf{X}_j|\lambda) \right\} \prod_{r+1 \le j \le k} \left\{ f_0^*(\mathbf{X}_j|\lambda) \right\} \right] \pi_2(\lambda) d\lambda, \quad (9)$$

where

$$m^{*}(\mathbf{X}) = \int \left[\prod_{1 \leq j \leq k} \left\{ f^{*}(\mathbf{X}_{j}|\lambda) \right\} \right] \pi_{2}(\lambda) d\lambda, \ f^{*}(\mathbf{X}_{j}|\lambda) = \int f(\mathbf{X}_{j}|\theta_{j}) \pi_{1}(\theta_{j}|\lambda) d\theta_{j},$$
$$f^{*}_{0}(\mathbf{X}_{j}|\lambda) = \int_{\theta_{j} \leq \theta_{j0}} f(\mathbf{X}_{j}|\theta_{j}) \pi_{1}(\theta_{j}|\lambda) d\theta_{j}, \text{ and } f^{*}_{1}(\mathbf{X}_{j}|\lambda) = \int_{\theta_{j} > \theta_{j0}} f(\mathbf{X}_{j}|\theta_{j}) \pi_{1}(\theta_{j}|\lambda) d\theta_{j}.$$

Testing Multiple One-Sided Null Hypotheses (II)

- If θ_{i0} is known (cont'd)
 - $\,\vartriangleright\,$ Stepwise Bayes factor for $H^{(r)}$ given ${\bf X}$

$$B^{(r)} = \frac{P(H^{(r)}|\mathbf{X})}{\sum_{r+1 \le i \le k} P(H^{(i)}|\mathbf{X})} \cdot \frac{\sum_{r+1 \le i \le k} \pi_0(H^{(i)})}{\pi_0(H^{(r)})}, \qquad (10)$$

where

$$\pi_0(H^{(r)}) = \int \left[\prod_{1 \le i \le r} \left\{ \int_{\theta_i > \theta_{i0}} \pi_1(\theta_i | \lambda) d\theta_i \right\} \prod_{r+1 \le i \le k} \left\{ \int_{\theta_i \le \theta_{i0}} \pi_1(\theta_i | \lambda) d\theta_i \right\} \right] \pi_2(\lambda) d\lambda.$$

• If $\theta_{10} = \cdots = \theta_{k0} \equiv \theta_0$ and θ_0 is an unknown parameter of control group \triangleright posterior probability of H_i

$$P(H_i | \mathbf{X}) = [m_0^*(\mathbf{X})]^{-1} \int \left[\int f(\mathbf{X}_0 | \theta_0) f_0^*(\mathbf{X}_i | \lambda) \pi_1(\theta_0 | \lambda) d\theta_0 \right]$$
$$\prod_{1 \le j \le k}^{(-i)} \{ f^*(\mathbf{X}_j | \lambda) \}] \pi_2(\lambda) d\lambda$$
(11)

Testing Multiple One-Sided Null Hypotheses (III)

- If θ_{i0} is unknown and $\theta_{10} = \cdots = \theta_{k0} \equiv \theta_0$
 - ▷ posterior probability of H_i (cont'd) where

$$m_0^*(\mathbf{X}) = \int \left[\prod_{0 \le j \le k} \{f^*(\mathbf{X}_j | \lambda)\}\right] \pi_2(\lambda) d\lambda.$$

 $\,\triangleright\,$ Posterior probability of $H^{(r)}$ given ${\bf X}$

$$P(H^{(r)}|\mathbf{X}) = [m_0^*(\mathbf{X})]^{-1} \int \left[\int f(\mathbf{X}_0|\theta_0) \prod_{1 \le j \le r} \{f_1^*(\mathbf{X}_j|\lambda)\} \prod_{r+1 \le j \le k} \{f_0^*(\mathbf{X}_j|\lambda)\} \right] \\ \pi_1(\theta_0|\lambda) d\theta_0 = \pi_2(\lambda) d\lambda.$$
(12)

Multiple Testing with A Standard Using Point Null Hypotheses (I)

- $X_{ij} \sim N(\theta_i, \sigma^2)$
- Prior density $g_1(\theta_i|\xi,\sigma^2) = N(\mu,\xi\sigma^2)$, for some known μ and ξ , with $\pi_2(\sigma^2) \propto (\sigma^2)^{-1}$.
- Null hypotheses $H_i: \theta_i = \theta_0$ versus $\overline{H}_i: \theta_i \neq \theta_0, i = 1, \dots, k$, for some known θ_0 .

Example 1. Mee, Shah, and Lefante (1987) (MSL) present a method for comparing k independent means with a known standard [data from Romano (1977)].

- Ten ball bearings are randomly selected from each of four production lines.
- MSL employ their procedure and conclude that process 2 is out of control. By applying the proposed Bayesian stepwise simultaneous testing procedure to the data with $\mu = 1$ mm, we come to the same conclusion (Table 1)

Multiple Testing with A Standard Using Point Null Hypotheses (II)

for Ball Bearing Data											
Process	Mean	Sample Variance	n	B_i	r	$B^{(r)}$					
2	1.406	0.18345	10	0.091	0	0.044					
1	1.194	0.08392	10	0.734	1	1.978					
4	1.176	0.05920	10	0.945	2	2.629					
3	1.129	0.17021	10	1.878	3	22.512					

Table 1: Summary Statistics and Marginal and Stepwise Bayes Factors

Multiple Testing with An Unknown Control Using Point Null Hypotheses (I)

- Prior density $\pi_1(\theta_i|\xi,\sigma^2) = N(\mu,\xi\sigma^2), i = 0,\ldots,k$. and $\pi_2(\sigma^2) \propto (\sigma^2)^{-1}$.
- Null hypotheses $H_i: \theta_i = \theta_0$ versus $\bar{H}_i: \theta_i \neq \theta_0, i = 1, \dots, k$, for unknown parameter θ_0 of commonly referenced group.

Example 2. [Steele, R. et al (1980)] Toxicological effects of six different chemical solutions on young mice

- Comparisons of the six solutions with the control (group 0) and not on the comparisons among the six solutions.
- Dunnett's two-sided single-step confidence interval method: solutions 3 and 6 are significantly more toxic than the control in inhibiting mouse growth [Westfall, Tobias, Rom, Wolfinger, and Hochberg (1999), pp54-56].
- Our method with prior mean $\mu = 90$ and $\xi = 2$ concludes that groups 3, 6, and 2 are significantly different from the control in terms of toxicological effects (Table 2).

Multiple Testing with An Unknown Control Using Point Null Hypotheses (IV)

for Mouse Growth Data										
Group	Mean	Std. Dev.	n	B_i	r	$B^{(r)}$				
3	72.14	8.41	4	0.02	0	0.23				
6	74.24	7.81	4	0.03	1	0.34				
2	80.48	12.68	4	0.12	2	0.81				
5	84.68	18.35	4	0.28	3	1.25				
4	91.88	9.44	4	0.94	4	2.53				
1	95.90	23.89	4	1.57	5	5.21				
0	105.38	13.44	4							

Table 2: Summary Statistics and Marginal and Stepwise Bayes Factors

Multiple Testing with An Unknown Control Using One-Sided Null Hypotheses (I)

- $H_i: \theta_i \leq \theta_0$ versus $\overline{H}_i: \theta_i > \theta_0, i = 1, \dots, k$, with θ_0 being the unknown mean of the control group.
- Prior densities IG(a/2, b/2) for σ^2 and ξ .

Example 3. [White and Froeb (1980)] The effect of smoking on pulmonary health:

- Subjects were assigned, based on their smoking habits, to one of six groups non-smokers (NS), passive smokers (PS), non-inhaling smokers (NI), light smokers (LS), moderate smokers (MS), and heavy smokers (HS).
- A sample of 1050 female subjects, 50 from non-inhaling group and 200 from each of the remaining groups, were selected and data on their pulmonary function (forced vital capacity, FVC) were recorded.
- Smoking effects on individual's pulmonary health relative to non-smokers.
- Dunnett's one-sided method: there is a significantly difference in mean FVC between non-smokers and light, moderate and heavy smokers [Hsu (1996)].
- The proposed Bayesian procedure with $\mu = 3.30$: same conclusion (Table 3).

Multiple Testing with An Unknown Control Using One-Sided Null Hypotheses (III)

for Smoking and Pulmonary Health Data $B^{(r)}$ Group (#)Std. Dev. B_i Mean rnHS(5)2.550.38 200 0.010 0.33 MS(4)0.04 0.852.800.38 200 1 LS(3)3.150.390.22 $\mathbf{2}$ 0.97200 NI(2)3.19 0.52500.493 1.24 PS(1)3.230.46 200 1.071.43 4 NS(0)3.350.63 200

 Table 3: Summary Statistics and Marginal and Stepwise Bayes Factors

Remarks and Conclusions

- Equivalent results to those obtained from frequentist methods.
- Multiple testing involving normal means with unequal variances
- Simultaneous testing of means and variances from multiple normal populations
- Wide scope of applications: Applicable to many multiple testing problems with a non-hierarchical family of hypotheses
- Bayesian false discovery rate (FDR)
- Bayesian step-up procedure
- Bayesian generalized step-up-down procedure
- Bayesian credible interval approach
- Robustness: intrinsic Bayes factor and fractional Bayes factor