A Bayesian Approach to Stepwise Simultaneous Testing

Jie Chen
Merck Research Laboratories, WP37C-305
West Point, PA 19486, USA

Sanat K. Sarkar
Temple University
Philadelphia, PA 19122, USA

http://www.sbm.temple.edu/~sanat /BSST.pdf

The Third International Conference on Multiple Comparisons

Bethesda, Maryland, USA, August 5-7, 2002

August 7, 2002



Outline

Introduction
Bayesian hypothesis testing

A Bayesian stepwise simultaneous testing procedure
> The proposed procedure

> Testing multiple point null hypotheses

> Testing multiple one-sided null hypotheses

Applications to normal data
> Multiple testing with a standard using point null hypotheses
> Multiple testing with an unknown control using point null hypotheses

> Multiple testing with an unknown control using one-sided null hypotheses

Remarks and conclusions



Frequentist stepwise multiple testing procedures

Comparing the ordered test statistics or associated p-values with a set of critical

values in a stepwise fashion towards identifying the set of true and false null
hypotheses.

e Step-down methods — starts with testing the most significant hypothesis and
continues until an acceptance occurs or all hypotheses are rejected.

o Step-up methods — starts with testing the least significant hypothesis and
continues until a rejection occurs or all the hypotheses are accepted.

e Generalized step-up-down method of order r (Tamhane, Liu, and Dunnett
1998) — starts with testing the rth least significant hypothesis.
> acceptance =— test continues in step-up manner

> rejection = test continues in step-down manner



Bayesian multiplicity adjustment

e Why multiplicity adjustment for Bayesians

>
>
>

Berry (1988)
Breslow (1990)
Berry and Hochberg (1999)

e Bayesian multiple comparisons procedures

>
>

Duncan (1965): Bayesian decision-theoretic approach

Waller and Duncan (1969): hyper-prior distribution for the unknown

ratio of between-to-within variances

Tamhane and Gopal (1993): comparisons of treatments with a control

under additive overall loss function

Westfall, Johnson and Utts (1997): prior probability adjustment
Gopalan and Berry (1998): Dirichlet process prior for all configurations of
hypotheses

Shaffer (1999): semi-Bayesian method



Current status of Bayesian testing of multiple hypotheses

e Bayesian hypothesis testing and model selection
> Pairwise Bayes factors — Berger (1999); Berger and Pericchi (1996, 2001)
> Multiple and partial Bayes factors — Bertolino, Piccinato, and Racugno
(1995)
e Features of existing Bayesian testing procedures
> Single step
> Large number of families (configurations)
> Intractable configurations of hypotheses with large family of hypotheses

> computationally extensive



Bayesian Hypothesis Testing (I)

e Distributional setups

> Let X = {X4,..., X%} be independent samples from k populations, each
with pdf

fxild) = [ flxil6s), i=1,....k

1<i<n;

> Let the 0;,7 =1,..., k,be independent with the first stage prior w1 (6;|\)
and the second stage prior for A = (A1, A2) being
mo(A) = ma1 (A1|A2) a2 (A2).

> H;:0 € O, against H; : 0 € ©;, fori = 1,...,k, where @ = {01, ...,0.},
©,NO6, =0 and O, U, = Q.

e Posterior probability of H; given X

P(H;|X) = /@ 7(0]X)do



Bayesian Hypothesis Testing (II)

e Posterior probability of H; given X (cont’d)

where
m(8]X) = [m(X)] 7 f(X|6)7(8),
Fx10)= 1] £,
1<i<k
/ H 7'('1 ‘)\ 7'('2
1<i<k
and
_ / £(X|0)r(6)d6
Q

P(H;|X) = 1— P(H;|X)
e Marginal Bayes factor of H;

P(HZ’X) 1—71'1'()
1—P(HZ‘X) 70 7

B; =



Bayesian Hypothesis Testing (I1I)

Marginal Bayes factor of H; (cont’d)

with
70 — / 7T(9)d9
O,

(2

For testing H = ﬂf"lei against H = Uleﬁi,

Jy7(01X)d0 11— [, 7(6)do
1— [, 7(0]X)d6 [, =(8)d6

If A = (A1, \2) is known

B_

B H1§z‘§k B; 1 - ngz‘gk 40

Iheai<i+Bi) = Ilicici B Tli<i<k mio
If 0 — 1— 750 for all ’s

[li<ick B
[licick(P+ Bi) — [li<ci<r B

B=(2"-1)



A Bayesian Stepwise Simultaneous Testing Procedure (I)

o Let By <--- < B() be the ordered values of the marginal Bayes factors
Bi, ..., Bk, and Bj) correspond to H ;.

e If the strength of evidence for H ;) is weak, then the strength of evidence for
H ;) should be weaker for all i < j;

e If the strength of evidence for H ;) is strong, then the strength of evidence
for H(;) should be stronger for all [ > j.

o )
o () Hay - HeyHepqry - Hey
J

{Ifu),---,ff(k)} ) {FI(1),H(2_),---,H(k_)},--- )
{Hay, - Hogmry, Hy b {Hays - H -

e Define
H) = {ﬂ;ﬂ:lﬁ(i)} M {m§:r+1H(i)}

forr=0,1,...,k with Hy = Q.



A Bayesian Stepwise Simultaneous Testing Procedure (II)

e Stepwise Bayes factor for H(") to any of H TV ... HK)

B — P(H™|X) . 2 rq1<i<k n(HY)

> rii<ick PHW|X) m(H)

where 7(H (")) is the prior probability of H"), r =0,1,..., k — 1.

e The proposed procedure
Step 0. Start with » = 0, i.e., the intersection of all the k& null hypotheses,
calculate B(O). If B(®) > ¢, then accept H(O) = ﬂleH(i) and stop; if
B0 < ¢, then reject H 1y go to the next step.

Step r. Calculate B("). If B(") > ¢, then accept H(") and stop; if B(") < ¢,
then reject all H;) for ¢ <r + 1 and go to the next step.

Step k-1. Calculate B¢~V If B*=1) > ¢ then accept H*~1) and stop; if
Bk=1) < ¢ then reject all H; for i < k.

e The choice of ¢: Berger, Boukai, and Wang (1997).
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Some features of the proposed procedure

Step-down multiple testing procedure

Two main steps
> Specification of target families of true and false null hypotheses

> stepwise search for the most plausible one of these families
Considerable reduction in the size of set of families from 2% to k + 1

Systematic improvement of the search for the “right” family by

incorporating information gathered at every step
Practically feasible in terms of keeping track of various configurations

Computationally economic
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Testing multiple point null hypotheses (I)

® Hiieizei(),izl,...,k, against Ezez#ezo,Z:L,k

e Conditional prior given A
m1(0:|\) = Tl (0; = 0i0) + (1 — mi0) g1 (05| N)I(0; # Oi0).

e If 0,y is known

> Marginal Bayes factor of H;

PHX) = w0 [mmxz-w@-o)H”) [0 (X,100)

1<5<k
- wf*(XjrA)}] ra(\)A, (2)

where  f*(X;|N) = [ f(X;[0;)g1(0;|\)d0;, j=1,....k,

m(X) = [ | TT {maf (6500 + (1 = m0) (K0} | ma(

1<j<k
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Testing multiple point null hypotheses (II)

o If 0,y is known (cont’d)

> Posterior probability of H(™ given X

PHOX) = w0 [ | T {0 ma)f (i
H {Wiof(Xieio}]@()\)d)\,

r4+1<i<k

> Stepwise Bayes factor for testing H (")

B _ P(H™|X) ' . Z H 1 — o
> ri1<j<r P(HWIX) '

) . 50
r+1<5<k r4+1<:<j

> If A = (A1, A2) is known

—1

o= > [ I S > oI

r41<j<k \ r+1<i<j

. . T50
r+1<j<k \ r+1<i<j

13
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Testing multiple point null hypotheses (I1I)

o If 1p=--- =0,y =0y and 6y is an unknown parameter of control group

> Posterior probability of H; given X

PUHLX) — motx> / [ | raltoymor (Xiloo) [T (o (X,160)
1<j<k
—|—(1 — ng)f*(Xj’)\)}ﬂ'l (90‘)\)6190] 7'('2()\)6[)\, (6)

where
mo(X) = [ [ff(XoWo) [i<icr {mj0f (X;100) 4+ (1 = mjo) f*(X5]N) }

1 (90 ’)\)d@g] 7T2()\)d)\

> Posterior probability of H(") given X

PHOX) = X [/ [f(Xoeo>{ T (=m0 £ O5 1M

1<j<r
H ngf(Xj’(go)}ﬂ'l(eop\)d(g()] 7T2(>\)d)\ (7)
r+1<5<k
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Testing Multiple One-Sided Null Hypotheses (1)

° Hlezgezg,Z:L,k against Hi29i>0i0,i:1,...,k.

e If 0,9 is known

> Posterior probability of H; and H(") given X are, respectively

PUtX) = e ()1 [ o]

1<j<k

{f*(XjP\)}]?Tz()\)d)\. )

P(H(”IX)Z[m*(X)]lfl II {11 {fS‘(XjM)}]m(A)dA, (9)

1<j<r r+1<j<k
where
w0 = [ | T A miar, 060 = [ 76010)m0, 3,
1<j<k
OGN = [ RO I8 6, sy, and Fi K0 = [ 1K 8w 6y 0.
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Testing Multiple One-Sided Null Hypotheses (II)

o If 0,y is known (cont’d)

> Stepwise Bayes factor for H(™ given X

B —

where

mo(H™) :/ [

P(H(T) 1X) Zr+1§i§k 7TO(H(Z‘))

Zr+1§i§k P(H®X)

1<:<r

{/90% wl(QilA)in}

7T0(H(T)) ’

r+1<:<k

(10)

{/97;<9w m (Qi’A)in} ] ma(A)dA.

o If 1p = =0y =0y and 6y is an unknown parameter of control group

> posterior probability of H;

P(H;|X)

w01 | [ [ %ol 5 (X0 Bol )

1<j<k

16

H”{f*(XﬂA)}] ra(\)d)

(11)



Testing Multiple One-Sided Null Hypotheses (IIT)

o If 6,5 is unknown and 619 = --- = 00 = 69

> posterior probability of H; (cont’d)

where

%)= | [ 1T {f*(XjrA>}]m<A>dA.

0<j<k

> Posterior probability of H(") given X

PIOX) = g0 [ [ [rexon) TT ey TT 4506W)

1<j<r r+1<j<k

7T1((90’)\)d90] 7T2()\)d)\ (12)
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Multiple Testing with A Standard Using Point Null
Hypotheses (I)

[ ) Xij ~ N(ei,0'2)

e Prior density g;1(6;|¢,02) = N(u,&0?), for some known p and €, with
ma(0?) o (02) 71,

e Null hypotheses H; : 8; = 0y versus H; : 0; # 0y, i = 1, ..., k, for some known
9.

Example 1. Mee, Shah, and Lefante (1987) (MSL) present a method for
comparing k independent means with a known standard [data from Romano
(1977)].

e Ten ball bearings are randomly selected from each of four production lines.

e MSL employ their procedure and conclude that process 2 is out of control.
By applying the proposed Bayesian stepwise simultaneous testing procedure
to the data with © = 1 mm, we come to the same conclusion (Table 1)
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Multiple Testing with A Standard Using Point Null

Hypotheses (II)

Table 1: Summary Statistics and Marginal and Stepwise Bayes Factors

for Ball Bearing Data

Process Mean Sample Variance n B; r B(™)
2 1.406 0.18345 10 0.091 0 0.044
1 1.194 0.08392 10 0.734 1 1.978
4 1.176 0.05920 10 0.945 2 2.629
3 1.129 0.17021 10 1.878 3 22.512
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Multiple Testing with An Unknown Control Using Point
Null Hypotheses (I)

e Prior density m(6;|€,0°%) = N(u,é0°),i =0, ..., k. and m3(0?) x (0%) L.

e Null hypotheses H; : 0; = 0y versus H; : 0; # 0y, i =1, ..., k, for unknown

parameter 6y of commonly referenced group.

Example 2. [Steele, R. et al (1980)] Toxicological effects of six different

chemical solutions on young mice

e Comparisons of the six solutions with the control (group 0) and not on the

comparisons among the six solutions.

e Dunnett’s two-sided single-step confidence interval method: solutions 3 and
6 are significantly more toxic than the control in inhibiting mouse growth
[Westfall, Tobias, Rom, Wolfinger, and Hochberg (1999), pp54-56].

e Our method with prior mean u = 90 and £ = 2 concludes that groups 3, 6,
and 2 are significantly different from the control in terms of toxicological
effects (Table 2).
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Multiple Testing with An Unknown Control Using Point
Null Hypotheses (IV)

Table 2: Summary Statistics and Marginal and Stepwise Bayes Factors

for Mouse Growth Data

Group Mean Std. Dev. n B; r B(™)
3 72.14 8.41 4 0.02 0 0.23
6 74.24 7.81 4 0.03 1 0.34
2 80.48 12.68 4 0.12 2 0.81
5 84.68 18.35 4 0.28 3 1.25
4 91.88 9.44 4 0.94 4 2.53
1 95.90 23.89 4 1.57 5 5.21
0 105.38 13.44 4
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Multiple Testing with An Unknown Control Using
One-Sided Null Hypotheses (I)

e H,:0, <60, versus H;:0; >0y, i=1,---, k, with 6y being the unknown
mean of the control group.

e Prior densities IG(a/2,b/2) for 0% and €.

Example 3. [White and Froeb (1980)] The effect of smoking on pulmonary
health:

e Subjects were assigned, based on their smoking habits, to one of six groups
— non-smokers (NS), passive smokers (PS), non-inhaling smokers (NI), light
smokers (LS), moderate smokers (MS), and heavy smokers (HS).

e A sample of 1050 female subjects, 50 from non-inhaling group and 200 from
each of the remaining groups, were selected and data on their pulmonary
function (forced vital capacity, FVC) were recorded.

e Smoking effects on individual’s pulmonary health relative to non-smokers.

e Dunnett’s one-sided method: there is a significantly difference in mean FVC
between non-smokers and light, moderate and heavy smokers [Hsu (1996)].

e The proposed Bayesian procedure with p = 3.30: same conclusion (Table 3).
22



Multiple Testing with An Unknown Control Using
One-Sided Null Hypotheses (IIT)

Table 3: Summary Statistics and Marginal and Stepwise Bayes Factors

for Smoking and Pulmonary Health Data

Group (#) Mean Std. Dev. n B, T B
HS (5) 2.99 0.38 200 0.01 0 0.33
MS (4) 2.80 0.38 200 0.04 1 0.8
LS (3) 3.15 0.39 200 0.22 2 097
NI (2) 3.19 0.52 50 0.49 3 1.24
PS (1) 3.23 0.46 200 1.07 4 143
NS (0) 3.35 0.63 200
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Remarks and Conclusions

Equivalent results to those obtained from frequentist methods.
Multiple testing involving normal means with unequal variances

Simultaneous testing of means and variances from multiple normal

populations

Wide scope of applications: Applicable to many multiple testing problems

with a non-hierarchical family of hypotheses
Bayesian false discovery rate (FDR)
Bayesian step-up procedure

Bayesian generalized step-up-down procedure
Bayesian credible interval approach

Robustness: intrinsic Bayes factor and fractional Bayes factor
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