

# Fast Permutation Tests, Especially for Multiple Comparisons and Even When One Sample is Large, that Efficiently Maximize Power Under Conventional Monte Carlo and Allow for Simultaneous Permutation-Style P-Value Adjustments

J.D. Opdyke, DataMinelt



#### **Contents**

- 1. Goal and Rationale
- 2. Permutation Sampling, Duplicate Samples, & Power
- 3. Maximizing Power Under Conventional Monte Carlo
- 4. Efficiently "Oversample" Based on Expected Runtime
- 5. Approximate the Optimal Number of Samples
- 6. How Much Power Gain...?
- 7. ...At What Cost?
- 8. Speed Premium for Multiple Comparisons
- 9. Increased Power for Permutation-Style P-Value Adj



#### 1. Goal and Rationale

GOAL:

Quickly implement many non-parametric permutation tests, even when one sample in a pair is large, with maximum power under conventional Monte Carlo

- WHY MANY TESTS &/OR ONE LARGE SAMPLE?
  - "Parity Testing" in Regulatory Telecom OSS Reports
  - Medical studies using MRI data
  - clinical trials with large controls and many and smaller studies
  - Any multiple comparisons context requiring permutation-style p-value adjustments of permutation test p-values (and thus, computationally intensive nested sampling loops)



#### 1. Goal and Rationale

- WHY CONVENTIONAL MONTE CARLO?
  - Faster, more efficient sampling techniques (e.g. various methods of importance sampling) are not always implementable
  - when such methods can be implemented but their results are suspect, conventional Monte Carlo can be a useful verification
- WHY MAXIMUM POWER?
  - best test, all else equal

#### MCP 2002



### 2. Permutation Sampling, Duplicate Samples, & Power

- PROC PLAN, PROC MULTTEST, PROC NPAR1WAY, & PROC TWOSAMPL® can sample without replacement within a sample, as required of permutation tests
- None can sample without replacement across samples (i.e. none can avoid drawing duplicate samples)
- Duplicate samples → loss of power due to increased variance of estimated p-value



## 3. Maximizing Power Under Conventional Monte Carlo

- Use "oversampling" to efficiently obtain a unique set of samples (no duplicates)
  - a. draw more samples than desired (r)
  - b. delete duplicates
  - c. randomly select the desired number (T) of samples from the remainder
  - d. recall PROC PLAN if fewer than T samples remain
- "Oversampling" preserves the uniform distribution sampling assumption of nonparametric permutation tests



## 4. Efficiently "Oversample" Based on Expected Runtime

- Draw just enough "extra" samples (r-T) to minimize expected runtime
- Expected Runtime = g(n<sub>1</sub>, n<sub>2</sub>, r, T) = PROC PLAN RunTime \* expected # of Calls To PROC PLAN = PPRT(r, [n<sub>1</sub>+n<sub>2</sub>]) \* CTPP(r, T, [n<sub>1</sub>+n<sub>2</sub>]!/[n<sub>1</sub>!n<sub>2</sub>!])
- Choose optimal r, r\*, such that  $\partial g/\partial r = 0$



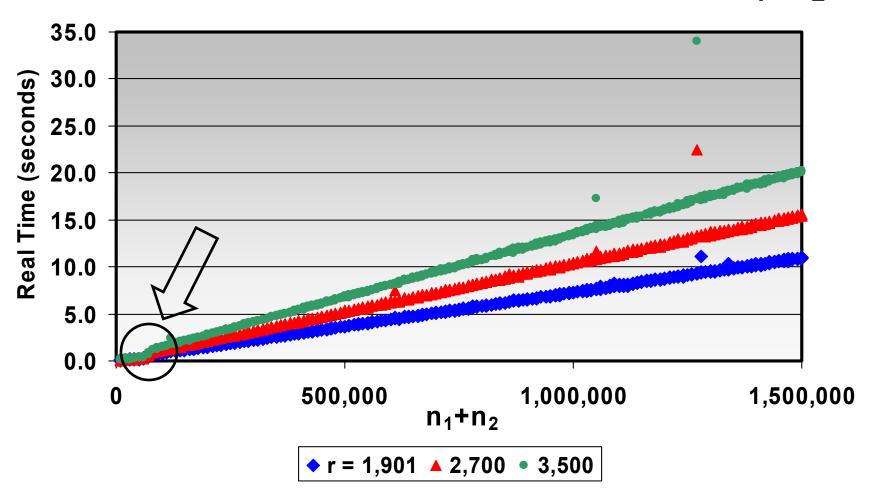
## 4. Efficiently "Oversample" Based on Expected Runtime

- PPRT(r,[ $n_1+n_2$ ])  $\approx \beta_0 + \beta_1*(n_1+n_2) + \beta_2*r + \beta_3*r*(n_1+n_2)$
- CTPP(r, T,  $[n_1+n_2]!/[n_1!n_2!]$ ) =

$$\left(\frac{1}{p}\right) = \left[\sum_{j=T}^{r} \left[\frac{\frac{(n_1 + n_2)!}{n_1! n_2!}}{j! \left(\frac{(n_1 + n_2)!}{n_1! n_2!} - j\right)!} \sum_{i=0}^{j} \frac{(-1)^i j! (j-i)^r}{i! (j-i)! \left(\frac{(n_1 + n_2)!}{n_1! n_2!}\right)^r}\right]\right)^{-1}$$

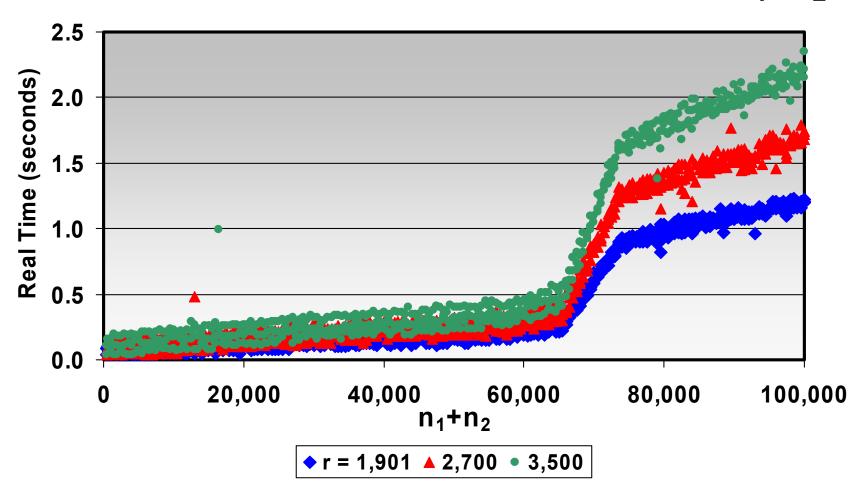


#### **GRAPH 1: PROC PLAN Runtime by r by n<sub>1</sub>+n<sub>2</sub>**

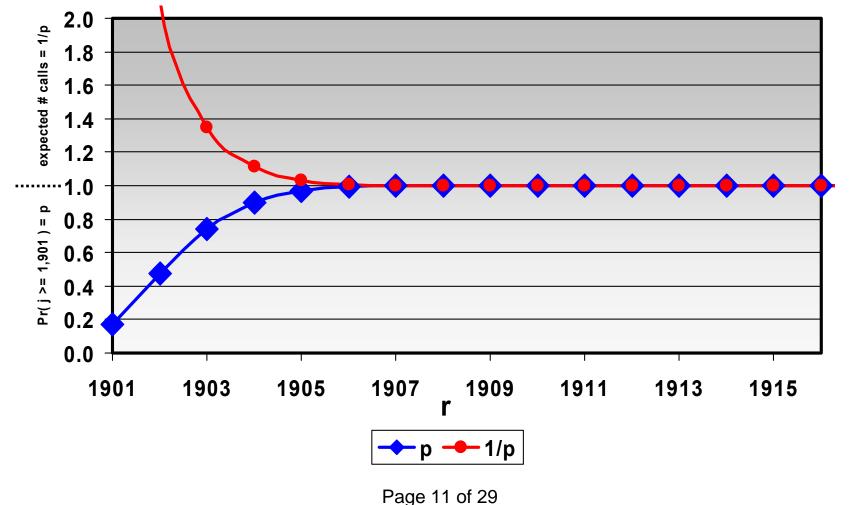




#### **GRAPH 2: PROC PLAN Runtime by r by n<sub>1</sub>+n<sub>2</sub>**

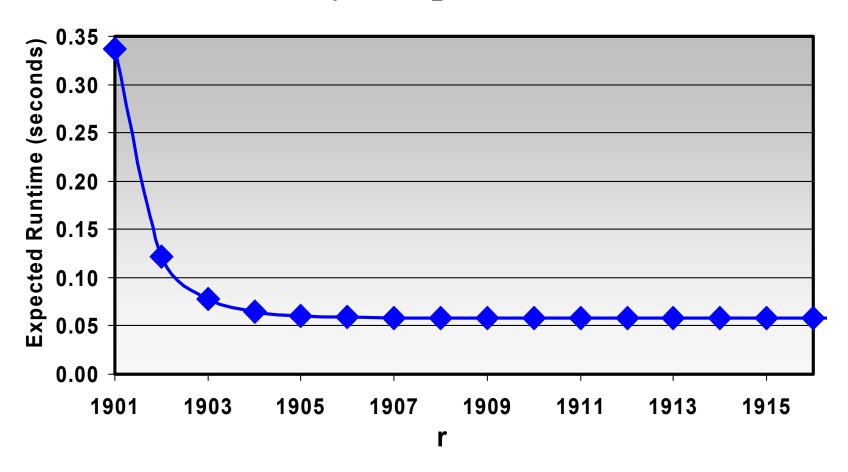


GRAPH 3: Probability of At Least T Unique Samples (p) & Expected Number of Calls to PROC PLAN (1/p) by r (for n<sub>1</sub>=68, n<sub>2</sub>=4, and T=1,901)



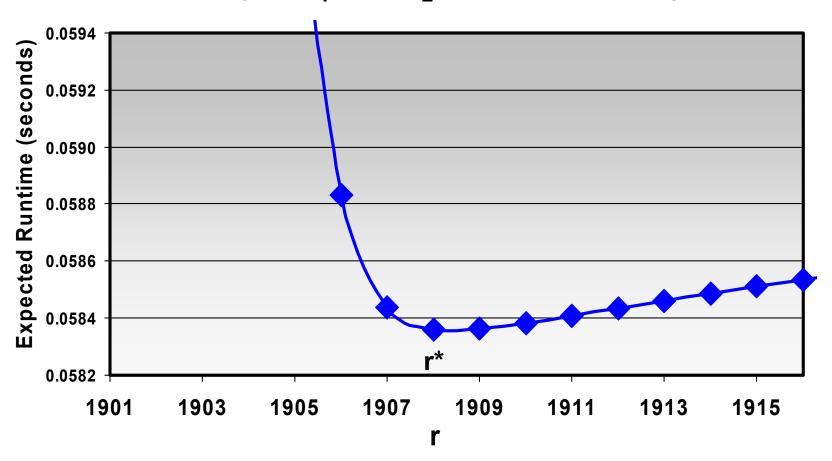


GRAPH 4: Expected Runtime (1/p \* one runtime) by r (for  $n_1=68$ ,  $n_2=4$ , and T=1,901)





GRAPH 5: Expected Runtime (1/p \* one runtime) by r (for  $n_1$ =68,  $n_2$ =4, and T=1,901)





## 5. Approximate Optimal r\*

- Precision required to numerically calculate r\* is too high to do "on the fly" in SAS<sup>®</sup> for every n<sub>1</sub> & n<sub>2</sub>
- However, since  $\partial g/\partial r \approx 0$  for r slightly > r\*, we can approximate:
  - a. Define ranges based on combinations  $(n_1+n_2)!/n_1!n_2!$
  - b. Pick suboptimal r\*s corresponding to each lower bound to obtain largest r\* for each range
  - c. Runtime of suboptimal  $r^* \approx runtime$  of  $r^*$  because  $\partial g/\partial r \approx 0$  for r slightly >  $r^*$  (see Graphs 4 & 5)



## 5. Approximate Optimal r\*

| $C = (n_1 + n_2)!/n_1!n_2!$     | "low-end"<br>r* | p<br>(lower bound)      | 1/p<br>(lower bound) |
|---------------------------------|-----------------|-------------------------|----------------------|
| C < 10,626                      | С               | 1.0<br>(assuming C ≥ T) | 1.0                  |
| 10,626 ≤ C < 52,360             | 2,138           | 0.997929320330667       | 1.002074976280530    |
| 52,360 ≤ C < 101,270            | 1,956           | 0.999058342955471       | 1.000942544598290    |
| 101,270 ≤ C < 521,855           | 1,934           | 0.999429717692296       | 1.000570607715190    |
| 521,855 ≤ C < 1,028,790         | 1,912           | 0.999726555240808       | 1.000273519551680    |
| $1,028,790 \le C < 10,009,125$  | 1,908           | 0.999512839120371       | 1.000487398321020    |
| 10,009,125 ≤ C < 25,637,001     | 1,904           | 0.999961594180711       | 1.000038407294350    |
| 25,637,001 ≤ C < 100,290,905    | 1,903           | 0.999944615376581       | 1.000055387691050    |
| 100,290,905 ≤ C < 5,031,771,045 | 1,902           | 0.999839691379204       | 1.000160334323770    |
| 5,031,771,045 ≤ C               | 1,901           | 0.999641154940541       | 1.000358973875460    |



- Permutation test p-values relying on any type of sampling will have actual size level (asl) > α
- ∴ either p-values or critical value (c<sub>α</sub>) should be adjusted
- Smaller variance of no replacement sampling (NR)  $\Rightarrow$  smaller asl  $\Rightarrow$  larger  $c_{\alpha}^* \Rightarrow$  larger power

• 
$$\sigma^2_{NR} < \sigma^2_{WR}$$
  $\Rightarrow$   $asl_{NR} < asl_{WR}$   $\Rightarrow$   $c_{\alpha NR}^* > c_{\alpha WR}^*$   $\Rightarrow$  power<sub>NR</sub> > power<sub>WR</sub>



- $\sigma^2_{WR}$  is based on the binomial,  $\sigma^2_{bin} = n_p pq$   $\sigma^2_{NR}$  based on hypergeometric,  $\sigma^2_{hyp} = n_p pq(N-n_p)/(N-1)$ (N = # possible samples,  $n_p$  = # permutation samples)
- $\sigma^2_{bin} > \sigma^2_{hyp} \Rightarrow \sigma^2_{WR} > \sigma^2_{NR}$

• 
$$\operatorname{asl}_{\mathsf{WR}} = \mathsf{Pr}(\mathsf{S} \leq \mathsf{n_p}^* \alpha \mid \mathsf{p}) = \frac{1}{n_p} \sum_{i=0}^{n_p} \sum_{k=0}^{\lfloor n_p \alpha \rfloor} \binom{n_p}{i} \left(\frac{i}{n_p}\right)^k \left(1 - \frac{i}{n_p}\right)^{(n_p - k)}$$

• asl<sub>NR</sub> = Pr(S \le n<sub>p</sub>\*\alpha | p) = 
$$\frac{1}{n_p} \sum_{i=0}^{N} \frac{\sum_{k=0}^{N} \binom{i}{n_p} \binom{n_p}{n_p}}{\sum_{k=0}^{N} \binom{N-S}{n_p}}$$
• 
$$\frac{1}{n_p} \sum_{s=0}^{N} \sum_{k=0}^{N} \frac{\binom{N-S}{n_p}}{\binom{N}{n_p}}$$

#### MCP 2002



- if (asl /  $\alpha$ ) is essentially constant close to  $\alpha$  = 0.05, then  $c_{\alpha}^* \times (asl / \alpha) = \alpha$   $c_{\alpha}^* = \alpha^2 / asl$
- $\therefore c_{\alpha WR}^* = \alpha^2 / asl_{WR} and c_{\alpha NR}^* = \alpha^2 / asl_{NR}$
- power can only be obtained via simulation, but by CLT we know that asymptotically:

power = 
$$_{1-\Phi}\left(z_{\alpha}-\frac{\delta\sqrt{n}}{\sigma}\right)$$
 where  $\delta$  = effect,  $z_{\alpha}$  =  $\Phi^{-1}(1-\alpha)$ 

• power<sub>NR</sub> 
$$\approx 1 - \Phi\left(z_{c_{\alpha_{NR}}^*} - \frac{\delta\sqrt{n}}{\sigma}\right)$$
, power<sub>WR</sub>  $\approx 1 - \Phi\left(z_{c_{\alpha_{WR}}^*} - \frac{\delta\sqrt{n}}{\sigma}\right)$ 

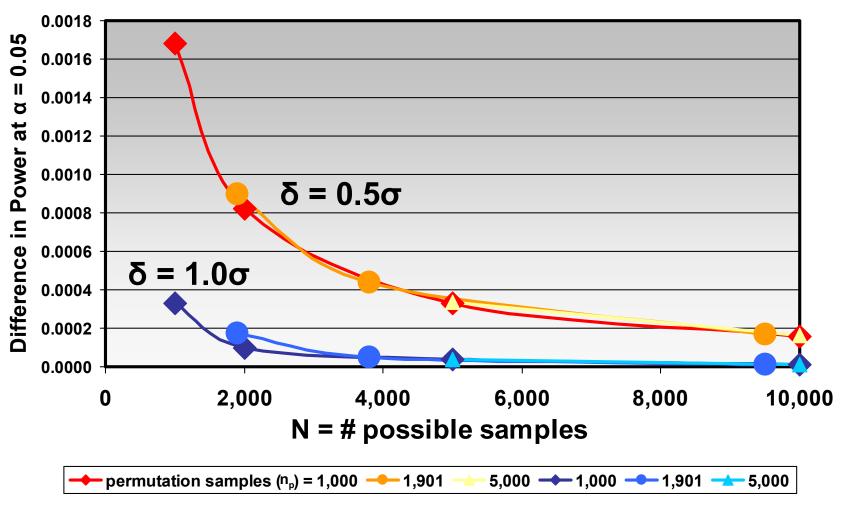


| # Permutation<br>Samples, n <sub>p</sub> | # Possible<br>Samples, N | asl <sub>NR</sub> | asl <sub>WR</sub> | Ca*     | c <sub>a</sub> * |
|------------------------------------------|--------------------------|-------------------|-------------------|---------|------------------|
| 1,000                                    | 1,000                    | 0.05100           | 0.05144           | 0.04902 | 0.04859          |
| 1,000                                    | 2,000                    | 0.05122           | 0.05144           | 0.04880 | 0.04859          |
| 1,000                                    | 5,000                    | 0.05136           | 0.05144           | 0.04868 | 0.04859          |
| 1,000                                    | 10,000                   | 0.05140           | 0.05144           | 0.04863 | 0.04859          |
| 1,901                                    | 1,901                    | 0.05050           | 0.05073           | 0.04951 | 0.04927          |
| 1,901                                    | 3,802                    | 0.05062           | 0.05073           | 0.04939 | 0.04927          |
| 1,901                                    | 9,505                    | 0.05069           | 0.05073           | 0.04932 | 0.04927          |
| 5,000                                    | 5,000                    | 0.05020           | 0.05028           | 0.04980 | 0.04971          |
| 5,000                                    | 10,000                   | 0.05024           | 0.05028           | 0.04976 | 0.04971          |



| # Permutation<br>Samples, n <sub>p</sub> | # Possible<br>Samples, N | Power <sub>NR</sub><br>δ=0.5σ | Power <sub>WR</sub><br>δ=0.5σ | <b>ΔPower</b> δ=0.5σ | Power <sub>NR</sub> $\delta = \sigma$ | Power <sub>WR</sub> $\delta = \sigma$ |         |
|------------------------------------------|--------------------------|-------------------------------|-------------------------------|----------------------|---------------------------------------|---------------------------------------|---------|
| 1,000                                    | 1,000                    | 0.53093                       | 0.52925                       | 0.00168              | 0.96483                               | 0.96450                               | 0.00033 |
| 1,000                                    | 2,000                    | 0.58483                       | 0.58401                       | 0.00082              | 0.98147                               | 0.98137                               | 0.00010 |
| 1,000                                    | 5,000                    | 0.58434                       | 0.58401                       | 0.00033              | 0.98141                               | 0.98137                               | 0.00004 |
| 1,000                                    | 10,000                   | 0.63373                       | 0.63357                       | 0.00016              | 0.99040                               | 0.99039                               | 0.00001 |
| 1,901                                    | 1,901                    | 0.53283                       | 0.53193                       | 0.00090              | 0.96519                               | 0.96502                               | 0.00017 |
| 1,901                                    | 3,802                    | 0.58708                       | 0.58664                       | 0.00044              | 0.98173                               | 0.98168                               | 0.00005 |
| 1,901                                    | 9,505                    | 0.63628                       | 0.63611                       | 0.00017              | 0.99058                               | 0.99056                               | 0.00001 |
| 5,000                                    | 5,000                    | 0.58864                       | 0.58830                       | 0.00034              | 0.98191                               | 0.98187                               | 0.00004 |
| 5,000                                    | 10,000                   | 0.63787                       | 0.63771                       | 0.00016              | 0.99068                               | 0.99067                               | 0.00001 |

GRAPH 6: Permutation Sampling With vs. Without Replacement: Approximate Difference in Power at  $\alpha = 0.05$  by N by  $n_p$  by  $\delta$ 





#### 7. ... At What Cost?

- Even for small N,  $n_p$ , and  $\delta$ , approximate power gains from NR sampling are relatively small
- However, runtime cost also is small typically less than 1%
- ∴ use NR permutation sampling unless cost of 1% of runtime is high and cost of Type II error is low

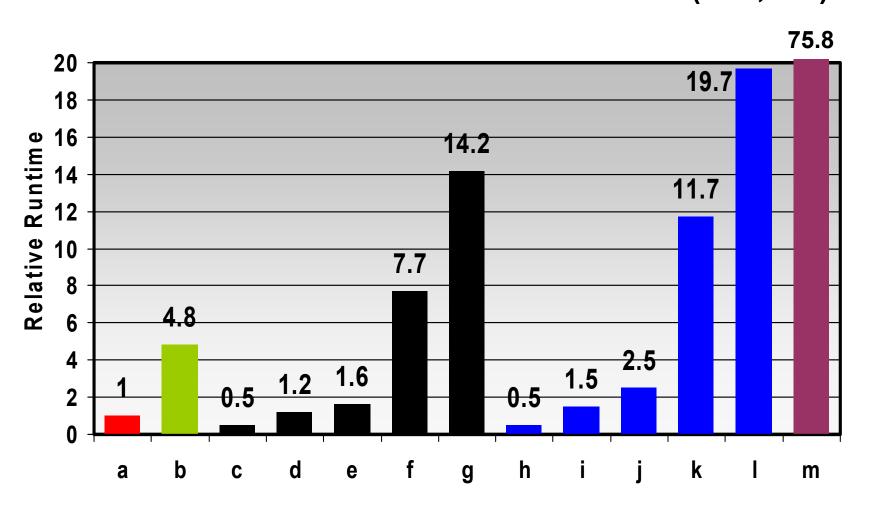


# 8. Speed Premium for Multiple Comparisons

- For multiple study groups per control group (and/or multiple comparisons), code merges each group of original data to the PROC PLAN sampling output separately
- Separate merges avoids multiple outputting of control records for each corresponding study group (or each multiply-compared group)
- ⇒ Huge runtime savings on sorts/merges of large datasets (see Graph 7)
- PROC MULTTEST, PROC NPAR1WAY, and PROC TWOSAMPL® do not have this option (Graph 7)



#### **GRAPH 7: Relative Start-to-Finish Runtime (T=1,901)**





#### **Graph 7 Key**

| Column | Method                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------|
| а      | PROC PLAN with "oversampling"                                                                          |
| b      | Cytel's PROC TWOSAMPL®                                                                                 |
| С      | PROC NPAR1WAY, study/control=1, (n <sub>1</sub> +n <sub>2</sub> )<10 <sup>4</sup>                      |
| d      | PROC NPAR1WAY, study/control>1, (n <sub>1</sub> +n <sub>2</sub> )<10 <sup>4</sup>                      |
| е      | PROC NPAR1WAY, study/control=1, 10 <sup>4</sup> <(n <sub>1</sub> +n <sub>2</sub> )<10 <sup>5</sup>     |
| f      | PROC NPAR1WAY, study/control=1, 10 <sup>5</sup> <(n <sub>1</sub> +n <sub>2</sub> )<1.5*10 <sup>6</sup> |
| g      | PROC NPAR1WAY, study/control=1, 10 <sup>6</sup> <(n <sub>1</sub> +n <sub>2</sub> )<1.5*10 <sup>7</sup> |
| h      | PROC MULTTEST, study/control=1, (n <sub>1</sub> +n <sub>2</sub> )<10 <sup>4</sup>                      |
| i      | PROC MULTTEST, study/control>1, (n <sub>1</sub> +n <sub>2</sub> )<10 <sup>4</sup>                      |
| j      | PROC MULTTEST, study/control=1, 10 <sup>4</sup> <(n <sub>1</sub> +n <sub>2</sub> )<10 <sup>5</sup>     |
| k      | PROC MULTTEST, study/control=1, 10 <sup>5</sup> <(n <sub>1</sub> +n <sub>2</sub> )<1.5*10 <sup>6</sup> |
| I      | PROC MULTTEST, study/control=1, 10 <sup>6</sup> <(n <sub>1</sub> +n <sub>2</sub> )<1.5*10 <sup>7</sup> |
| m      | Looping in SAS® (see Jackson affidavit)                                                                |



# 9. Increased Power for Permutation-Style P-Value Adj

- Take a single step resampling method adjustment
- No-replacement sampling ⇒ increased power from:
  - ❖ a) smaller variance of each p<sub>i</sub>\*

$$\Rightarrow \min_{1 \le j \le k} p^*_{j_{NR}}$$
 is stochastically larger than  $\min_{1 \le j \le k} p^*_{j_{WR}}$ 

$$\Rightarrow \Pr\left(\min_{1 \leq j \leq k} p_{j_{NR}} \leq p_i \mid H_0^C\right) < \Pr\left(\min_{1 \leq j \leq k} p_{j_{WR}} \leq p_i \mid H_0^C\right)$$

$$\Rightarrow \tilde{p}_{i_{NR_a}} < \tilde{p}_{i_{WR_a}} \Rightarrow power_{NR_a} > power_{WR_a}$$



# 9. Increased Power for Permutation-Style P-Value Adj

❖ b) previous Monte Carlo error p-value adjustment

$$\Rightarrow p_{i_{NR}} < p_{i_{WR}}$$

$$\Rightarrow \Pr\left(\min_{1 \leq j \leq k} p_j \leq p_{i_{NR}} \mid H_0^C\right) < \Pr\left(\min_{1 \leq j \leq k} p_j \leq p_{i_{WR}} \mid H_0^C\right)$$

$$\Rightarrow \tilde{p}_{i_{NR_b}} < \tilde{p}_{i_{WR_b}}$$

$$\Rightarrow power_{NR_{b}} > power_{WR_{b}}$$



# 9. Increased Power for Permutation-Style P-Value Adj

 use NR sampling for both permutation tests and permutation-style p-value adjustments to maximize power gain

$$\Pr\left(\min_{1 \leq j \leq k} p_{j_{NR}} \leq p_{i_{NR}} \mid H_0^C\right) < \Pr\left(\min_{1 \leq j \leq k} p_{j_{WR}} \leq p_{i_{WR}} \mid H_0^C\right)$$

$$\Rightarrow \tilde{p}_{i_{NR}} < \tilde{p}_{i_{WR}}$$

$$\Rightarrow power_{NR} > power_{WR}$$

Same rationale applies to stepwise adjustments



#### **Contact:**

• J.D. Opdyke, President



jdopdyke@datamineit.com www.datamineit.com 203-249-4837