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Abstract

Biomarker Subgroup Testing, Misclassification, and Missing Data

The objective of precision medicine has been stated as treating the “right
patient with the right drug at the right time”. Many predictive biomarkers
facilitate precision medicine by explaining a clinically significant amount of
the variation in a treatment effect. The anticipation that the treatment will
only be effective in a biomarker-defined subgroup means that many proposed
procedures for testing treatment effect overall and in one or more biomarker-
defined subgroups are unsatisfactory. The clinical objective is not to find the
largest population in whom statistical significance of the treatment effect is
retained, but to determine the population (if it exists) in whom the effect is
homogeneous and clinically significant. In this talk, we’ll discuss frequentist
and Bayesian testing procedures that have been designed to address the
clinical objective of predictive biomarkers. We’ll also quantify how biomarker
measurement error attenuates the difference in treatment effect between
biomarker defined subgroups. We’ll also show that missing biomarker results
(e.g., specimens unavailable or unevaluable for biomarker testing) can be
addressed with Bayesian selection models even when minimal assumptions
on the missing data mechanism mean that model parameters aren’t fully
identified.



Biomar
Biomar

Biomar

Outline

cer Intended Uses
cer Device (Test) Evaluation

cer Subgroup Evaluation

— Companion, Complementary Diagnostics

— Frequentist, Bayesian

Biomarker Misclassification

Missing Data

Concluding Remarks



Intended Uses for Biomarkers

* Diagnosis, in symptomatic patients.
e Screening, in asymptomatic patients.

* Early detection, enabling intervention at an earlier and
potentially more curable stage than under usual clinical
diagnostic conditions.

* Monitoring, e.g., of disease response during therapy, with
potential for adjusting level of mterventlon%e.g. dose) on a
dynamic and personal basis.

* Risk assessment, leading to preventive interventions for those
at sufficient risk.

* Prognosis, allowing for more (less) aggressive therapy for
patients with worse (better) prognosis.

e Prediction of safety or efficacy of a specific therapy to aid
benefit/risk assessment in individual patients (e.g., predict
response, predict SAE, monitor response to adjust schedule or
dose or discontinue).

Last three involve prediction of a future state of health.
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Test Performance Evaluation

* Analytical performance - does my test measure
the analyte | think it does? Correctly? How
reliably?

* Clinical performance - does my test result
correlate with target condition of interest in a
clinically significant way?

e Clinical Utility - does my test support clinical
decisions for patient management such as
effective treatment or preventive strategies?



Fryback-Thornbury Model

Level Objective Study Type*
Technical efficacy | Analytical performance
2 | Diagnostic accuracy efficacy| Clinical performance
3 | Diagnostic thinking efficacy
4 Therapeutic efficacy
5 Patient outcome efficacy Clinical outcome
6 Societal efficacy

Fryback DG and Thornbury JR. The Efficacy of Diagnostic Imaging.
Med Decis Making 1991; 11(2): 88-94.

*FDA CDRH/CBER Guidance. Design Considerations for Pivotal
Clinical Investigations for Medical Devices, 2013 (Sections 7.7, 8).




. .
Analytical Performance Studies

e Bias, relative to a reference method for measuring analyte.

e Precision. Measurement variation in repeated testing.

— repeatability of the test result taken under the same set of
conditions (e.g., testing sample replicates in the same run)

— reproducibility of test result taken under different conditions
(e.g., testing sample replicates in different labs)

* Limit of Detection. Smallest analyte level detected reliably.
e Reagent Stability. Shelf-life, in-use, and shipment.

e Analytical Specificity. Measurement of a specific analyte in
the presence of potential interfering substances, cross-
reactivity, or cross-contamination.

 Commutability of different sample types, when processed
samples are used in place of clinical samples.

CLSI. A Framework for Utilizing CLSI Guidelines to Evaluate Clinical Laboratory
Measurement Procedures; 2" ed, CLSI report EP19. Wayne, PA: Clinical and
Laboratory Standards Institute; 2015.



Predictive, Prognostic Markers

* Predictive biomarker informs on likely outcomes
with specific treatments (e.g., relative sensitivity or
resistance).

— Other names: treatment selection biomarker, CDx

* Prognostic biomarker is biological characteristic
indicating likelihood of disease progression in a
homogeneous population of patients, either not
receiving therapy (natural course) or on a standard
therapy.

— inform on outcomes independent of specific treatment

(i.e. in oncology, ability of tumor to proliferate, invade,
and/or spread)

Yamauchi H, Stearns V, Hayes DF. When Is a Tumor Marker Ready for Prime Time? A Case Study
of c-erbB-2 as a Predictive Factor in Breast Cancer. J Clin Oncol. 2001 Apr 15;19(8):2334-56.



https://www.ncbi.nlm.nih.gov/pubmed/11304787

Intended Uses / Claims

e Companion Diagnhostic:

— Provides information that is essential for the safe
and effective use of a corresponding therapeutic
product, allowing its benefits to exceed its risks.

— E.g., defines the population for whom a
therapeutic product is indicated.

e Complementary Diagnhostic:

— Provides clinically useful information about a
therapeutic product yet is not a prerequisite for
the therapeutic product’s use (not an official FDA
definition).
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Quantitative Interaction
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PD-L1 IHC 28-8 pharmDx

e PD-L1 expression in tumor specimens from
patients with non-small cell lung cancer (NSCLC)
and melanoma.

* Indications for Use

— PD-L1 expression as detected by PD-L1 IHC 28-8
pharmDx in non-squamous NSCLC may be associated
with enhanced survival from OPDIVO ® (nivolumab).

— Positive PD-L1 status as determined by PD-L1 IHC 28-8
pharmDx in melanoma is correlated with the

magnitude of the treatment effect on progression-free
survival from OPDIVO®.




PD-L1 IHC 28-8 pharmDx
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FOA

Clinical Trial CA206097, Melanoma™

Table 8. Summary of PFS and Hazard ratios for CA209067 study by PD-L1 expression status

Median Progression Free Survival (95% CI)
PD-1L1 Nivolumab Nivolumab Ipilimumab
Expression monotherapy +ipilimumab monotherapy
Level combination
therapy
<1% 2.83 (2.76.5.13) 11.17 (6.93, NR) | 2.79(2.66. 2.96)
=1% 12.39 (8.11, NR) 12.35(8.51.NR) | 3.91(2.83,4.17)
Hazard Ratios (95% CI)

Nivolumab Nivolumab + Nivolumab +

Vs, ipilimumab ipilimumab

ipilumumab Vs, Vs,

ipilimumab nivolumab®

<1% 0.69 (0.5, 0.93) 0.37 (0.26, 0.52) 0.58 (0.41. 0.81)
>1% 0.45(0.35,057) |043(0.32,0.58) 0.96 (0.70, 1.33)

“*Exploratory analysis

*previously untreated, unresectable or metastatic melanoma



Median Survival Time

-
o

-
= N W

—

N WA~ O OO N 00 ©

®
- PD-L1>=1%
PD-L1<1%
L _
I[IJi Nivo Ipi+Nivo

Treatment

15



Hazard Ratio
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j .
Interpretation and Causality

e Cochran: What could be done to clarify the step
from association to causation?

* Fisher: Make your theories elaborate.

e “..when constructing a causal hypothesis one
should envisage as many different consequences
of its truth as possible, and plan observational
studies to discover whether each of these
consequences is found to hold”.

— Cochran WG. The planning of observational studies of
human populations. JRSS A 1965; 234-266. (p. 252).



FDA Guidance, Predictive Markers

Alosh M, Fritsch K, Hugue M, Mahjoob K, Pennello G, Rothmann M,
Russek-Cohen E, Smith F, Wilson S, Yue L. Statistical Considerations on

Subgroup Analysis in Clinical Trials, Statist Biopharm Res 2015; 7(4):286—
304.

Beaver JA; Tzou A; Blumenthal GM; McKee AE; Kim G; Pazdur R; Philip R.
An FDA Perspective on the Regulatory Implications of Complex Signatures
to Predict Response to Targeted Therapies. Clin Cancer Res. 2017, 23 (6),
1368-1372.

US FDA. Guidance on Enrichment Strategies for Clinical Trials to Support

Approval of Human Drugs and Biological Products. US FDA: Silver Spring,
MD, 2012.

US FDA. In Vitro Companion Diagnostic Devices, US FDA: Silver Spring
MD, 2014.

US FDA. Principles for Codevelopment of an In Vitro Companion

Diagnostic Device with a Therapeutic Product. US FDA: Silver Spring MD,
2016.

US FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and
other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug
Administration (US); 2016.

18



Biomarker Subgroup Evaluations



Purposes of Subgroup Evaluatioﬂ

1. Investigate the consistency of treatment
effect across subgroups of clinical importance.

2. Explore the treatment effect across different
subgroups within an overall non-significant
trial.

3. Evaluate safety profiles limited to one or a few
subgroup(s).
4. Establish efficacy in the targeted subgroup

when included in a confirmatory testing
strategy of a single trial.

Tanniou J, van der Tweel |, Teerenstra S, Roes KCB. Subgroup analyses in confirmatory clinical
trials: time to be specific about their purposes. BMC Med Res Methodol. 2016 Feb 18; 16:20:



https://www.ncbi.nlm.nih.gov/pubmed/26891992
https://www.ncbi.nlm.nih.gov/pubmed/26891992
https://www.ncbi.nlm.nih.gov/pubmed/26891992

Check Consistency Across Subgroups

* Trial was designed to establish effectiveness in
overall study population.

e Heterogeneity of treatments effects not
anticipated to have any particular pattern a
priori (treatment effects exchangeable).



The Subgroup Problem
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Classical Linear Regression
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Figure 1: Treatment effect point estimates and 95% intervals across the eight Infant Health
and Development Program sites. The left panel display classical estimates from a linear
regression.  The middle panel displays the same point estimates as in the left panel but
with confidence intervals adjusted to account for a Bonferroni correction. The right panel
displays posterior means and 95% intervals for each of the eight site-specific treatment
effects from a fitted multilevel model.

Gelman A, Hill J, Yajima M. Why We (Usually) Don't Have to Worry About
Multiple Comparisons, J Res On Educational Effectiveness. 2012; 5: 189-211. 23



Confirm Efficacy in Targeted Subgroup

e All-comers trial: Test for treatment effect in
targeted subgroup, complement, and overall.

 Enrichment trial: Enroll targeted subgroup only.

 Heterogeneity of treatments effects is
anticipated to have a particular pattern a priori
(treatment effects not exchangeable).

e EX. A subgroup of cancer patients exhibiting the
molecular target of a drug are expected to be
more likely to respond to the drug than patients
without the molecular target.




Companion Diagnostic (CDx) Test

H,: treatment effect, overall
H.: drug efficacy, test positive subset S
Hg,: drug efficacy, test negative subset S’

e Clinical Objectives: Drug claim of efficacy for
— test positive subset, or

— overall

Freidlin B, Korn E, Gray R. Marker Sequential Test (MaST) design, Clin Trials 2014; 11: 19-27.

Millen, B.A., Dmitrienko, A., Song, G. (2014). Bayesian assessment of influence and interaction
conditions in multipopulation tailoring clinical trials. J Biopharm Stat. 2014;24(1):94-109.

Rothmann M, Zhang, Lu, Fleming T. Testing in a Pre-specified Subgroup and the Intent-to-treat
Population, Drug Inf J. 2012 Mar 1;46(2):175-179.



-
Marker Sequential Test (MaST)

o < a = level of procedure

If H. rejected at a,
then subgroup claim met,
if Ho rejected at a, overall claim met.

else if H, rejected at a — a., overall claim met.

Freidlin B, Korn E, Gray R. Marker Sequential Test (MaST) design, Clin Trials 2014; 11: 19-27.
Bretz F, Maurer W, Brannath W, Posch M. Stat Med. 2009 Feb 15;28(4):586-604. 26



. . FOA
Adaptive Designs .
e Adaptive sample size
e Response Adaptive (enrollment, randomization)
e Adaptive analysis (biomarker signature, threshold)

e Biomarker analysis designs

— Blur usual recommendation to perform development and
validation phases on separate data sets.

— Conceivable for pivotal validation of a CDx if analytical

accuracy and reproducibility is exceptional and highly
robust .

— Cross-validated performance may not generalize out-of-
sample because classifier may have been fit to patient
characteristics, specimen (or imaging) characteristics, and
measurement errors (e.g., batch effects) that are peculiar
to the training data set.

Baker SG, Kramer, BS, Sargent DJ, Bonetti M. Biomarkers, subgroup evaluation,
and clinical trial design. Discov Med. 2012, 13 (70), 187-192.



Subgroup Misclassification



Subgroup Misclassification

Response R = 0,1 (to treatment)
Biomarker B = 0,1 (reference result)
Measurement B* = 0,1 (test result)

e Assume misclassification error of B by B™ is
non-differential to outcome, that is

B*|B,R = B*|B
e, R|B*, B = R|B

29



Subgroup Misclassification

Consider
D=Pr(R=1B=1)—-Pr(R=1|B=0)
D*=Pr(R=1|B*=1) —Pr(R =1|B* = 0)

NDME

Then D* =D X (PPV + NPV —1)

where PPV =Pr(B*=1|B=1)
NPV = Pr(B* = 0|B = 0)

Kuha, Skinner, Palmgren, 2005, “Misclassification Error” in Encyc Biostat 30



Notation

e 0,, = E,;,(Y) = expectation of Y for treatment
A = a, biomarker status B =b (4,B = 0,1).

— objective response (0,1), event-free survival time

e 0, =E,(Y) = expectation of Y for treatment
A = a, biomarkertestresult T =t (A4, T = 0,1)

NDME

ot = 2p=00apPr(B = b|T = t)

= O0q0(1 —pt) + 041D,
p, =Pr(B=1|T =t)

31



Notation

e 0, =0 — 0y, = treatment effect (mean
difference) between treatment arms a = 0,1
given biomarker status B = b (= 0,1)

e Ayp= 0, — &y = predictive biomarker capacity.

e §; = 0{; — 0y; = treatment effect (mean
difference) between treatment arms a = 0,1
given testresult T =t (= 0,1)

32



Biomarker Stratified Design
0 = 01t — Oo;
Op = 61p — Oop
Estimand Ay = 6] — 6,
= (p1 — Po) (61 — o)
= (PPV + NPV — 1)A, 5,

= treatment arm by biomarker interaction
A, g attenuated by the factor PPV + NPV — 1.

33



-
NDME Attenuation Result

0p. — 01. = (09 — 0.1 ) (1 — TTp)
e That s,
E(logh|T =0)-E(logh|T =1)
=[E(logh|S =0)-E(logh|S =1)|x(NPV + PPV —-1)

 The difference in log hazard ratio between
groups defined by test T is attenuated relative
to the corresponding difference for test S.

"Provided PPV > 1 - NPV, i.e., T not negatively informative for S, so that
0 < PPV + NPV -1 <1. (Pennello, Clin Trials 2013 Oct;10(5): 666-76 )



-
Cox Proportional Hazards Model

* For treatments X = 0, 1, Cox hazard for S, X'is
Ay ]S, X) =2, (y)e””
B. = log hazard ratio for S ='s

A(Y|T, X)=E{4(y|T,S, X)|T,X,Y >y}

NDME

=E{A(y|S,X)|T,X,Y >y}

Rare Event

= Ao (Y)E{e"" T, X}
_ O(y)[eﬁox + oy (e —e? )}



-
Cox Proportional Hazards Model
AYIT X) = Ay ()] &7 + 7, (2 —e)]

Ay|T=L,X=1)-A(y|T=0,X =1
=4 (y) (e - (7, - 7,)
=[A(y|S=1,X=D)-A(y|S=0,X =1)|(#, - 7,)

e Same approximate attenuation holds for log hazard
ratio difference.

e Approximation is OK for rare enough outcome. More
investigation is needed.

Pepe MS, Self SG, Prentice, RL. Statist Med 1989;, 8, 1167-1178.
Prentice RL. Biometrika 1982; 69, 331-342.
Lin DY, Psaty BM, Kronmal RA. Biometrics 1998; 54(3): 948-963.
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Missing Data in Biomarker
Evaluation Studies



Diagnostic Test Evaluation

e Y = Reference Standard Result
for a present or future state of health

—presence or absence of disease
—time to onset of disease, progression, death, etc.
—true level of measurand in a sample

e X = Test Result
— Quantitative (concentration of analyte)
— Continuous (e.g., ratio)
— Semi-Quantitative (ordinal)
— Qualitative (binary)

e Z = Covariates (including comparator tests)



Missing Data in Diagnostic Studie

Missing Reference Y. (verification bias)
— State of health was not verified by the reference.

Missing Test Result X. (unsatisfactory test bias)
— Sample is unavailable or unevaluable.

— Test result was invalid.

— Lack of consent to use sample.

Imperfect Reference Y. (misclassification bias)
— Yis subject to error

Imprecision in X or Y. (measurement error bias)
— Result varies over repeated measurement




Test Result MAR

e Test result X missingness indicator M =0,1.
e |If Xis MAR, then

M| X,Y,Z=M|Y,Z
e, X|MY,Z=X1|Y,Z (MAR)

Se, Sp unbiased in complete data.

Get PPV, NPV by Bayes Theorem or IPW (if Y =
0,1 sampling fractions are known).

MAR underlies validity of case-control studies.



Reference Result MAR

 Reference Y missingness indicator V=0,1.

e |If Yis MAR, then
V| X)Y,Z=V
L.e., Y |V, X,Z=Y

X,Z
X,Z (MAR)

PPV, NPV are unbiased among complete data.

Get Se, Sp by Bayes Theorem or IPW (provided
sampling fractions for X = 0,1 are known.



.
Intention to Treat (ITT)

* |Includes every subject who is randomized
according to their treatment assighment,
regardless of non-compliance with treatment,
missing outcomes, protocol deviations,
withdrawal, or anything else that happened after
randomization.

e The ITT analysis avoids overoptimistic estimates of
treatment efficacy due to the exclusion of subjects
on the basis of post-randomization variables.
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. .
Intention to Diagnose (ITD)

* Include every subject, regardless of whether

the subject is

— missing the test result,

— the clinical reference result, or
— comparator test results.

e When appropriate (meaningful for analysis),
impute missing data when evaluating the test
for diagnostic performance.

Bu Y, Zhou XH. J Biopharm Stat. 2016, 26 (6), 1118-1124

Denne JS, Pennello G, Zhao L, Chang SC, Althouse S. Stat Biopharm Res. 20146 (1), 78—88.
Li, M. J. Biopharm Stat. 2015, 25 (3), 397-407.

Lunceford, J.K. Pharm Stat. 2015, 14 (3), 233-241.



. .
Intention to Diagnose (ITD)

 Missing Test Results

— If subject is retested, include retest result (if
retesting is consistent with intended use).

— Report number and proportion of subjects without
the test result by the reason it is missing (lack of

consent, sample un-available, sample unevaluable,
test result invalid)

— |f proportion of subjects with an invalid test result
is large, the test may have a design problem.

— Impute missing test results, if appropriate.

Begg, Greenes, Iglewicz. The influence of uninterpretability on the
assessment of diagnostic tests. J Chron Dis 1986; 39(8): 575-584.



Missing Y

Bayesian MNAR Model

46



Data

Test Result
o | o0 | 1
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-
Bayesian MNAR Model

r=Pr(T =1
p,=Pr(D=1|T =t), t=0,1
oy =Pr(v =1|D=d,T =t), d,t=0,1

¢ PriOr 7, pt1pdt - Beta(a,ﬁ)

e 7 parameters, 5 dofs in data

Pennello (2011). Bayesian Analysis of Diagnostic Test Accuracy When
Disease State is Unverified for Some Subjects, J Biopharm Stat, 21: 954-9798.



Missing Disease Verification I\/Iodﬂ

e Full MNAR model Pyt

— Probability of verification depends on missing

disease state, test result (parameters under-
identified).

e Reduced MNAR model Pat = Py

— Probability of verification depends on missing
disease state, not test result (identified).

 MAR model IOdt — pt

— Probability of verification depends on test result,
not missing disease state (identified)

49



-
MNAR Bayesian Models

 |[n some MNAR models, parameters are well-
defined, but not fully identified.

* |n some instances Bayesian MNAR models can
still obtain useful inferences.

— Neath, A., Samaniego, F. On the efficacy of Bayesian
inference for non-identifiable models. American
Statistician 1997; 51: 225-232.

— Gustafson, P. Measurement Error and Misclassification
in Statistics and Epidemiology: Impacts and Bayesian
Adjustments, Chapman & Hall / CRC, 2003.

— Gustafson, P. Bayesian Inference for Partially
Identified Models: Exploring the Limits of Limited
Data. Chapman & Hall / CRC, 2015.



FDA
Data Distributions .

X, +W, ~Bin(x,+w,_,7),

(Xow Xlt’W.t) ‘ Xi TW,; ~ MUIts(X.t +W,;,

(IOOt (1_ pt)’ Pt pt’ (1_100t)(1_ pt)‘l'(l_plt)pt) )

51



Gibbs Sampler with
Data Augmentation

r | x,w" ~ Beta(ar + X, + WY, B+ X +WS)
O 1xw? ~ Beta(a+ X, + WS, B+ Xy, + W)

P | x,w" ~ Beta(a + %, S+ W)

: : : _ Ay AM
Wl(t|+1) |W-t’ p('),p(') i Bin[w,t, = (i-) Pt )pt(i) 5 ),
B L-py )P + A= o5 )A-P;7)

(1+1) __ (1+1) _
W, ” =W, —Ww, 7, 1=0,1

52



Hepatic Scintigraphy

o Liver Disease
Scintigraphy
D=0 | D=1 NA
T = 54 27 140
T= 32 231 166
Total 86 258 306
Sp.. =22 _62.8% NPV ce =22 — 66.7%
86 81
Sece = 221 _ 89.5% PPV ce = 25% _87.8%
258 263

Drum D.E., Christacopoulos, J.S. (1969). Hepatic scintigraphy in clinical .53
decision making, J. Nucl. Med., 13, 908-915. *53
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-
Test Ignorance Region

TIR delineates the possible estimates of Se, Sp over
all possible disease states of unverified subjects:

fl_ Xy + W, _ X1 < Se< X,
> X, +W, —X,/Se X, +W, X,.
g,(Se) =+ - . T Xy 1
XOO +W.0 Xj_l < Se < Xll +W1
X, +W, =X,/ (1-3e) X. X, + W,
- XOO __ Xll Sé\eg X11+W1
~ X, +W, — +w,)/ (1-Se .TW, W,
g,(Se)=49 ~ -~ (g ) o)/ ( ) K X
1- 01 _ X + W, <G < X, +
X W, (X, + W)/ Se X W, X1+W

Kosinski, A.S. and Barnhart, H.X. (2003). Statist. Med., 22:2711-2721.
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Hepatic Scintigraphy,
1/7t of Missing Data

o Liver Disease
Scintigraphy
D=0 | D=1 NA
T = 54 27 20
T = 32 231 24
Total 86 258 44
Sp.. =22 _62.8% NPV ce =22 — 66.7%
86 81
Sece = 221 _ 89.5% PPV ce = 25% _87.8%
258 263

Drum D.E., Christacopoulos, J.S. (1969). Hepatic scintigraphy in clinical .5g
decision making, J. Nucl. Med., 13, 908-915. *58
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Joint Density

Heat Map vs TIR
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FOA
Concluding Remarks .

A biomarker’s capacity to predict treatment

response or treatment effect is only as good as
the test used to measure it.

* |n biomarker subgroup analysis, a priori biological
understanding may determine

— clinical objectives of validation study,
— statistical analysis plan.

e Biomarker signature (classifier) development and
validation has been a challenge

— No FDA approvals to date.
— Analytical validation can be very complex.



FOA
Concluding Remarks .

e Subgroup multiplicity can be out-of-control for
some diaghostic devices.

— Smoothing, not hypothesis testing may be best
option for data interpretation, labeling.

62



B-type Natriuretic Peptide (BNP)

Demographics
— age, sex, race, ethnicity, height, weight, BMI
Physical Exam, Signs and Symptoms

— vital signs, acute dyspnea (due to cardiac vs non-cardiac cause),
chest discomfort, pulmonary rales, peripheral edema, nocturnal
cough, etc.

Medical History, Risk Factors and Comorbidities

— diabetes, kidney disease / renal dysfunction (eGFR<60),
hypertension, history of Ml, cardiac ischemia, prior diagnosis of
HF, atrial fibrillation, myocarditis, tachycardia, LV hypertrophy,
pulmonary embolism, COPD, pneumonia, asthma, obstructive
sleep apnea, sepsis, anemia, cirrhosis of liver, obesity [BMI >
30], severe obesity [BMI > 37.5], etc.

Medication list

— beta-blockers, diuretics, ACE inhibitors, angiotensin Il receptor
blockers [ARBs], aldosterone antagonists, statins, etc.
e Prior to admission to ED
e ED medications (includes date and time of administration)


Presenter
Presentation Notes
The following is an example of the data that should be collected in case report forms


B-type Natriuretic Peptide (BNP)

Diagnostic Procedure Results (if available per standard of
care in the assessment of the dyspnea patient)

— ECG, Echocardiogram, Radionuclide angiography , Chest
radiography

Ejection fraction (EF)

Laboratory Results

— electrolytes, BUN, creatinine, eGFR, thyroid function tests, liver
function tests, HbAlc or fasting glucose, CBC, urinalysis,
troponin

Standard-of-care BNP or NT-proBNP value at admission
Diagnosis: heart failure vs no heart failure

Classification of HF if present and known:
— HFrEF (heart failure with reduced ejection fraction) (< 40% EF)
— HFpEF (heart failure with preserved ejection fraction) (> 40% EF)

Severity of HF if present: NYHA Functional Class (1, II, llI, V)



Graph Theory

Corollary 5.3.2. Let A, B, and C denote sets that partition of
factors in a graphical model such that every chain between a
factor in A and a factor in B involves at least one factor in C;
then the relationships among the factors in A and C can be
examined in the marginal table obtained by summing over the
factors in B.

Example 5.3.3. Model [123][24][456] is graphed below:

l o o>

e Accurate conclusions can be drawn from the marginal
tables nyy3.7 N1p34.0 N...456 AN N5 456



Concluding Remarks

e Benefit-Risk Evaluation of Diagnostic Devices

— Validation

e Baker, S. G. (2009). Putting risk into perspective: Relative utility curves. JNCI,
101:1538-1542

* Baker, S. G., Van Calster, B., Steyerberg, E. W. (2012). Evaluating a new marker for risk
prediction using the test tradeoff: An update. Int J Biostat 8(1):Article 5, 101:1538—-
1542.

e Evans SR, Pennello G, Pantoja-Galicia N, et al, for the Antibacterial Resistance
Leadership Group. Benefit-risk Evaluation for Diagnostics: A Framework (BED-FRAME).
Clin Infect Dis 2016; 63(6):812-7.

* Pennello G, Pantoja-Galicia N, Evans S. Comparing diagnostic tests on benefit-risk. J
Biopharm Stat 2016; 26(6): 1083—-1097.

* Pepe MS, Janes H, Li Cl, Bossuyt PM, Feng Z, Hilden J. Early-phase studies of
biomarkers: What target sensitivity and specificity values might confer clinical utlity?
Clin Chem 2016,62(5):737-742.

* Vickers, A. J., Elkin, E. B. (2006). Decision curve analysis: A novel method for evaluating
prediction models. Med Decis Making 26:565-574.

— Signature Development

* Gunter L, Zhu J, Murphy SA. Variable selection for qualitative interactions. Statistical
Methodology 8 (2011) 42-55.

e Schnell PM, Tang Q, Offen WW, Carlin BP. A Bayesian Credible Subgroups Approach to
Identifying Patient Subgroups with Positive Treatment Effects. Biometrics 2016; 72,
1026-1036.



FDA
Take Home Messages .

* Analytical Performance

— Characterizing the analytical performance of a
diagnostic device (its reliability in measuring the
analyte) is a prerequisite to applying it to specimens
in a clinical performance study.

e Clinical Performance
— Clinical significance should be demonstrated.
— Intended Use determines clinical data requirements.
— Claims in labeling depend on studies conducted.



FDA
Take Home Messages .

e Biomarker Signature Discovery / Development
— Classifier development, validation been challenging

— CDRH has a pre-submission program to meet with &
provide informal feedback to device sponsors.

* Independent validation

— Validate a biomarker assay on specimens independent
of those used to develop the assay.

 “Intent to Diagnose” Analysis

— An analysis of device performance should include all
study subjects, even if the device result or the
reference (gold) standard result is missing
(unavailable, unevaluable, invalid, indeterminate).
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