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             M arbitrary partitions of these hypotheses  
             M target FDR levels  

Output:    A set of rejected hypotheses and groups  
                 that are “internally consistent”  
                 such that group FDR is simultaneously  
                 controlled for all partitions.  

Special cases:    Benjamini-Hochberg procedure  
                            Simes test for the global null
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Simulation results

True signals p−filter BB BH

p-Filter: entries + rows + columns (3 partitions)

BB: entries + rows (2 partitions, constrained to be hierarchical)

BH: entries only

Target FDR: ↵
entries

= ↵
rows

= ↵
columns

= 0.2
20/22

10,000 hypotheses in a100 x 100 grid.

White (nulls) ~ N (0 , 1)  
Black (non-nulls) ~ N(m , 1) for some m > 0
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Simulation results

True signals p−filter BH

p-Filter: entries + rows + columns (3 partitions)

BB: entries + rows (2 partitions, constrained to be hierarchical)

BH: entries only

Target FDR: ↵
entries

= ↵
rows

= ↵
columns

= 0.2 20/22

3 partitions (rows, columns, entries) 
Each target FDR = 0.2.

Target FDR = 0.2
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We integrate all of the above in one framework.
(essentially “p-filter on steroids”)



Benjamini-Hochberg controls FDR under  
independence and positive dependence.

bk := max

⇢
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↵ · k
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P(k) = k-th smallest value among the set of Pi.
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Prior-weighted BH controls FDR
under independence and positive dependence.

Genovese-Wasserman-Roeder ’06

bk := max

⇢
k : Q(k) 

↵ · k
n

�

Q(k) = k-th smallest value among the set of Qi := Pi/wi.
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Prior+penalty-weighted BH controls weighted-FDR
under independence and positive dependence.

bk := max

⇢
k : Q(k) 

↵ · U(k)

n

�

Q(k) = k-th smallest value among the set of Qi := Pi/wi.

U(k) = sum of penalty weights of smallest k p-values.

Blanchard-Roquain ’08



Null-proportion adaptivity for BH  
controls FDR only under independence.

Schweder-Spjotvoll ’72, Storey et al. ’03, Benj-Kriegier-Yeku ’06
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Null-proportion adaptivity for  
Prior+penalty-weighted BH controls 
weighted-FDR only under independence.
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Reshaped BH controls FDR
under arbitrary dependence.

�(u) =

Z u

0
x d⌫(x) where ⌫([0, n]) = 1

Benjamini-Yekutieli ’01, Blanchard-Roquain ’08, Sarkar ‘08
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Reshaped prior+penalty-weighted BH controls 
weighted-FDR under arbitrary dependence.

bk := max

⇢
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UNIFIED MULTIPLE TESTING WITH PRIOR KNOWLEDGE 11

We will apply the LOOP condition in situations where x is the vector of
p-values P , and f(P ) represents a threshold. When f satisfies LOOP with
respect to index i, even though threshold f( eP�i) may di↵er significantly
from f(P ), the side of the threshold that P

i

lies on will not be a↵ected—in
other words, from the perspective of P

i

, the threshold might as well have
been f( eP�i) instead of f(P ).

To develop some intuition for the lemma that follows, we note that our
super-uniformity assumption (2.3) on null p-values can be equivalently stated
as follows:

E


1 {P
i

 t}
t

····················
�

 1 for any fixed non-random threshold t 2 [0, 1].(3.7)

Of course, if P
i

is uniform then the above inequality holds with equality.
The following super-uniformity lemma guarantees that property (3.7) con-

tinues to hold for certain random thresholds f(P ). As mentioned earlier, the
term “nonincreasing” used below refers to coordinatewise nonincreasing with
respect to the orthant ordering.

Lemma 1 (Super-uniformity lemma). Let f : [0, 1]n 7! [0,1) be arbi-
trary, and let index i 2 H0 refer to some null hypothesis.

(a) If f is nonincreasing, has range [0, 1], and satisfies the LOOP condi-
tion (3.6), then under independence and uniformity, we have

E


1 {P
i

 f(P )}
f(P )

····························
�

�

�

�

P�i

�

= 1, and hence E


1 {P
i

 f(P )}
f(P )

····························
�

= 1.

(b) If f is nonincreasing, then under positive dependence and super-uniformity,
we have

E


1 {P
i

 f(P )}
f(P )

····························
�

 1.

(c) For any constant c > 0 and any non-negative functions f, ef , under
arbitrary dependence and super-uniformity, we have

E

2

4

1
n

P
i

 c�
1

(f(P ))�
2

( ef(P ))
o

cf(P ) ef(P )
·························································

3

5  1 for all pairs �
1

,�
2

2 �(V).

The proof of this lemma is given in Appendix A. Statement (b) was first
proved by Blanchard and Roquain [9], who also prove a special case of
statement (c). Statement (a) with an inequality is recovered as a special

New! Generalization of Blanchard-Roquain ’08.
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the global null under positive dependence.

We test if Simes(P )  ↵, which happens i↵ bkBH � 1.
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The reshaped prior-weighted Simes test  
controls type-1error for the global null 
under arbitrary dependence.

We test if Simes(P )  ↵, which happens i↵ bkBH � 1.

Simes(P ) := min
1kn

Q(k) · n
�(k)
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Suppose we want to control the  
penalty-weighted group-FDR for a single partition :

20 RAMDAS, BARBER, WAINWRIGHT AND JORDAN

1. We introduce the generalized Simes test for the global null, and its
prior-weighted extension, the Simes

w

procedure. Using its connection
to the BH

w

procedure, we prove that it is a valid (conservative) test.
2. When the p-values are independent across groups, we show how to

control the group level FDR while incorporating hypothesis-level prior
weights, group-level penalty and prior weights, and group-level null
proportion adaptivity. (We consider more general settings in the next
section.)

To formalize the setup, suppose that we have partitioned our hypotheses
into G groups of size n

1

, n
2

, . . . , n
G

, with n = n
1

+ · · · + n
G

and that we
have access to prior weights at two di↵erent levels of granularity :

• Weights at the hypothesis level, represented by n positive weights

w
(1)

1

, . . . , w
(1)

n

that sum to n, one per hypothesis, reflecting prior belief
about which hypotheses are non-null.

• Two sets of weights at the group level, represented by positive val-

ues u(2)
1

, . . . , u
(2)

G

and w
(2)

1

, . . . , w
(2)

G

such that wTu = G. These reflect
penalties and prior beliefs, respectively.

We use the superscript (1) to refer to individual-level weights, and the su-
perscript (2) to refer to group-level weights. One may have access to one
or both sets of weights. For instance, it is possible that one may have the
knowledge that some group/family is more likely to be non-null than others,
but may not know exactly which hypotheses contribute to the non-nullity
within that group. In this case, one may reasonably only use group-level
weights. Another use of weights could be to reweight groups according to
their size. For example, we may give a larger prior weight to larger groups,
though such choices will truly depend on prior knowledge of the scientist.

In general, however, we wish to be able to incorporate all three sets of
weights simultaneously, and to reduce to classical procedures when some set
of weights is set to unity. To summarize, the general situation is as follows:

weight w
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Group AG, weights u

(2)
G ,w

(2)
G

,(6.1)

and we wish to select a subset of these groups, bS
grp

✓ [G], so that the
proportion of null groups is not too high. Call the set of all null groups as
H0

grp

: a “null group” is a group consisting entirely of null hypotheses. Define
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When we have multiple partitions, we would 
like to have “internally consistent” rejections,
(also known as consonance+coherence) :
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For every partition,

Each rejected group should contain  
at least one rejected element. 

Each rejected element should be  
contained in some rejected group.
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Eg: let’s see what happens if we have two partitions, 
the finest one (each element is a group), and a coarser one,
we want to control elementwise FDR and group FDR :
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Running BH+Simes on each partition separately 
might lead to “contradictory” findings.
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Naively intersecting the two sets of findings  
may control neither elementwise nor group FDR.
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= n). Then controlling the group FDR for this partition
corresponds exactly to controlling the standard elementwise FDR. If we do
not actually want to control the FDR at the finest level, then we can set
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and our aim is to reject some subset bS ✓ [n] that can simultaneously guar-
antee FDR control at the hypothesis level and the group level, while incor-
porating weights and/or adaptivity at both levels.

To describe a situation with three partitions, imagine that we can write
the p-values down in a rectangular grid where the p-values within a row
have some interpretable meaning (say, hypotheses corresponding to the same
point in space), and similarly the p-values within a column have a di↵er-
ent meaning (say, hypotheses corresponding to the same point in time).
Then in such a (possibly spatio-temporal) application, apart from the triv-
ial partition which controls the overall FDR, we may also want to control
the “spatial” FDR using a row partition where each group is a row, and
“temporal” FDR using a column partition where each group is a column,
or even the “spatio-temporal” FDR for using a rectangular partition when
each group is a block in space-time (see Barber and Ramdas [1] for further
discussion, numerical simulations, as well as a neuroscience application).

7.3. Deriving the p-filter algorithm. To run the p-filter algorithm,
we need to search for rejection thresholds for each layer. These thresholds
will be parametrized by weighted discovery counts k
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Our unifying framework can handle
- many arbitrary, incomplete partitions,
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Our unifying framework can handle
- many arbitrary, incomplete partitions,
- consisting of possibly-overlapping groupsUNIFIED MULTIPLE TESTING WITH PRIOR KNOWLEDGE 29
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Our unifying framework can handle
- many arbitrary, incomplete partitions,
- consisting of possibly-overlapping groups
- with group-level prior+penalty weights, along with
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Our unifying framework can handle
- many arbitrary, incomplete partitions,
- consisting of possibly-overlapping groups
- with group-level prior+penalty weights, along with
- group-level adaptivity* or reshaping**.
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Our unifying framework can handle
- many arbitrary, incomplete partitions,
- consisting of possibly-overlapping groups
- with group-level prior+penalty weights, along with
- group-level adaptivity* or reshaping**.

Using the p-filter algorithm results in 
- an internally consistent set of rejections,
- simultaneously controls weighted FDR for all partitions,
- under independence*, positive or arbitrary** dependence.

UNIFIED MULTIPLE TESTING WITH PRIOR KNOWLEDGE 29

A
(1)

i

= {i}, and G
1

= n). Then controlling the group FDR for this partition
corresponds exactly to controlling the standard elementwise FDR. If we do
not actually want to control the FDR at the finest level, then we can set
↵
1

= 1. As an example, consider the situation with two partitions. Recalling
that n = n

1

+ · · ·+ n
G

+ `
2

, this situation can be represented as

u

(1)
1 ,w

(1)
1

z}|{

P
1

, . . . ,

u

(1)
n1 ,w

(1)
n1

z}|{

P
n1

| {z }

Group 1, weights u

(2)
1 ,w

(2)
1

, . . . ,

weights ...

z }| {

P
n1+···+nG�1+1

, . . . ,

weights ...

z }| {

P
n�`2

| {z }

Group G, weights u

(2)
G ,w

(2)
G

�

�

�

�

�

weights ...

z }| {

P
n�`2+1

, . . . ,

u

(1)
n ,w

(1)
n

z}|{

P
n

| {z }

Leftover group L

(2)

,

and our aim is to reject some subset bS ✓ [n] that can simultaneously guar-
antee FDR control at the hypothesis level and the group level, while incor-
porating weights and/or adaptivity at both levels.

To describe a situation with three partitions, imagine that we can write
the p-values down in a rectangular grid where the p-values within a row
have some interpretable meaning (say, hypotheses corresponding to the same
point in space), and similarly the p-values within a column have a di↵er-
ent meaning (say, hypotheses corresponding to the same point in time).
Then in such a (possibly spatio-temporal) application, apart from the triv-
ial partition which controls the overall FDR, we may also want to control
the “spatial” FDR using a row partition where each group is a row, and
“temporal” FDR using a column partition where each group is a column,
or even the “spatio-temporal” FDR for using a rectangular partition when
each group is a block in space-time (see Barber and Ramdas [1] for further
discussion, numerical simulations, as well as a neuroscience application).

7.3. Deriving the p-filter algorithm. To run the p-filter algorithm,
we need to search for rejection thresholds for each layer. These thresholds
will be parametrized by weighted discovery counts k

m

2 [0, G
m

] for each
layer m = 1, . . . ,M . The reader is cautioned that each k

m

will not be an
integer but instead be a real number corresponding loosely to the total
rejected penalty weight — we use k instead of u because the notation u is
already being used.

Given ~k := (k
1

, . . . , k
M

), we first perform an initial screening on each
layer separately:

bS init

m

(~k) =
n

g 2 [G
m

] : Simes
w

(1)(A(m)

g

)  min{↵m�m(km)

b⇡mGm
w(m)

g

,�
m

}
o

,

New!



UNIFIED MULTIPLE TESTING WITH PRIOR KNOWLEDGE 33

Special cases:. The setting with a single partition (M = 1) recovers all
other algorithms discussed in this paper. When we have the finest partition
with n groups containing one hypothesis each, p-filter reduces exactly
to the generalized BHY procedures discussed in Section 3, which of course
include BH and BY, and their doubly-weighted variants BHY

uw

introduced
in Section 4. When we employ adaptivity, we recover the St-BH method and
its weighted variant in Section 5. When we instantiate p-filter with the
coarsest partitions with 1 group containing n hypotheses, we recover exactly
the generalized Simes test, and its weighted variants from Section 6. When
instantiated to a single partition with G groups of hypotheses, each having
some hypotheses, we recover exactly the test that controls group-FDR, as
discussed at the end of Section 6. All the theorems and propositions in this
paper are essentially deduced as special cases of Theorem 7.1.

7.5. An e�cient implementation. Although one can employ a brute-
force grid search to find (bk

1

, . . . ,bk
M

), the p-filter algorithm presented
in Algorithm 1 is able to find these vectors e�ciently, and is a strict gener-
alization of the algorithm by the same name in Barber and Ramdas [1].

Algorithm 1 The p-filter for multi-layer FDR control
Input: A vector of p-values P 2 [0, 1]n;

M possibly incomplete partitions of possibly overlapping groups;
M target FDR levels ↵1, . . . ,↵M ;
M sets of prior weights and/or penalty weights, one pair of weights for each

group in each partition;
M thresholds for adaptive null proportion estimation �1, . . . ,�M .

Initialize: Set km = Gm, and b⇡m as in definition (7.2).
repeat

for m = 1, . . . ,M do
Update the mth vector: defining bSm(~k) as in equation (7.4), let

km  max

8
<

:k0
m 2 [0, Gm] :

X

g2 bSm(k1,...,km�1,k0
m,km+1,...,kM )

u(m)
g � k0

m

9
=

;(7.8)

end for
until the vectors k1, . . . , kM are all unchanged for one full cycle.
Output: Adaptive vectors bk1 = k1, . . . ,bkM = kM .

The following proposition provides a correctness guarantee on the output
of this procedure:

Proposition 5. The output of Algorithm 1 is the maximum legal corner
(bk

1

, . . . ,bk
m

), as required by the p-filter framework.
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M sets of prior weights and/or penalty weights, one pair of weights for each

group in each partition;
M thresholds for adaptive null proportion estimation �1, . . . ,�M .

Initialize: Set km = Gm, and b⇡m as in definition (7.2).
repeat

for m = 1, . . . ,M do
Update the mth vector: defining bSm(~k) as in equation (7.4), let

km  max

8
<

:k0
m 2 [0, Gm] :

X

g2 bSm(k1,...,km�1,k0
m,km+1,...,kM )

u(m)
g � k0

m

9
=

;(7.8)

end for
until the vectors k1, . . . , kM are all unchanged for one full cycle.
Output: Adaptive vectors bk1 = k1, . . . ,bkM = kM .

The following proposition provides a correctness guarantee on the output
of this procedure:

Proposition 5. The output of Algorithm 1 is the maximum legal corner
(bk

1

, . . . ,bk
m

), as required by the p-filter framework.
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Special cases:. The setting with a single partition (M = 1) recovers all
other algorithms discussed in this paper. When we have the finest partition
with n groups containing one hypothesis each, p-filter reduces exactly
to the generalized BHY procedures discussed in Section 3, which of course
include BH and BY, and their doubly-weighted variants BHY

uw

introduced
in Section 4. When we employ adaptivity, we recover the St-BH method and
its weighted variant in Section 5. When we instantiate p-filter with the
coarsest partitions with 1 group containing n hypotheses, we recover exactly
the generalized Simes test, and its weighted variants from Section 6. When
instantiated to a single partition with G groups of hypotheses, each having
some hypotheses, we recover exactly the test that controls group-FDR, as
discussed at the end of Section 6. All the theorems and propositions in this
paper are essentially deduced as special cases of Theorem 7.1.

7.5. An e�cient implementation. Although one can employ a brute-
force grid search to find (bk

1

, . . . ,bk
M

), the p-filter algorithm presented
in Algorithm 1 is able to find these vectors e�ciently, and is a strict gener-
alization of the algorithm by the same name in Barber and Ramdas [1].

Algorithm 1 The p-filter for multi-layer FDR control
Input: A vector of p-values P 2 [0, 1]n;

M possibly incomplete partitions of possibly overlapping groups;
M target FDR levels ↵1, . . . ,↵M ;
M sets of prior weights and/or penalty weights, one pair of weights for each

group in each partition;
M thresholds for adaptive null proportion estimation �1, . . . ,�M .

Initialize: Set km = Gm, and b⇡m as in definition (7.2).
repeat

for m = 1, . . . ,M do
Update the mth vector: defining bSm(~k) as in equation (7.4), let

km  max

8
<

:k0
m 2 [0, Gm] :

X

g2 bSm(k1,...,km�1,k0
m,km+1,...,kM )

u(m)
g � k0

m

9
=

;(7.8)

end for
until the vectors k1, . . . , kM are all unchanged for one full cycle.
Output: Adaptive vectors bk1 = k1, . . . ,bkM = kM .

The following proposition provides a correctness guarantee on the output
of this procedure:

Proposition 5. The output of Algorithm 1 is the maximum legal corner
(bk

1

, . . . ,bk
m

), as required by the p-filter framework.

Theorem : The algorithm returns a set of rejected hypotheses and groups  
that are internally consistent, and weighted group FDR is simultaneously controlled for 
all partitions, under independence, positive dependence or arbitrary dependence.
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