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Variable selection = point estimation
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Many-to-one comparisons = uncertainty
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Linear model

• y ∼ N (µ, σ2In)

• X ∈ Rn×p : design matrix

First-order misspecification

• µ ∈ range(X ) : full model is correct (unbiased)

• µ /∈ range(X ) : first-order misspecification

Models

• M ⊆ F = {1, . . . , p} with #M = m

• µ̂M ∼ N (µM , σ
2PM)

with µ̂M = PMy , µM = PMµ and PM = XM(X
T
MXM)

−1XTM
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To explain or to predict? (Shmueli, 2010)

Explanatory modeling

• Obtain the most accurate representation of the underlying

theory

• Avoid/minimize Bias

• Omitted-variable bias compromises interpretation

Predictive modeling

• Generate good predictions of new y

• minimize Bias2 + Variance

• A biased model can predict better than an unbiased one



Predictive modeling

Mean Squared Error

MSEM
σ2

= λM +m where λM =
‖µM − µ‖2

σ2

Relative efficiency

MSEM
MSEF

=
λM +m

λF + p
> 1 iff λFM =

‖µM − µF‖2

σ2
> p −m

Inferior and superior models

• I = {M ⊆ F : λFM > p −m}
• S = {M ⊆ F : λFM ≤ p −m}



Hypothesis testing

One true hypothesis

M ∈ I or M ∈ S

Testing for superiority

• M ∈ I against M ∈ S
• If M ∈ I rejected, then M ∈ Ŝα

Testing for inferiority

• M ∈ S against M ∈ I
• If M ∈ S rejected, then M ∈ Îα

Uncertainty

If both M ∈ S and M ∈ I not rejected, then M ∈ Ûα



Confidence sets

1− α confidence of no type I errors

P({Ŝα ∩ I = ∅} ∩ {Îα ∩ S = ∅}) ≥ 1− α

Familywise error control

The probability of at least one type I error in testing the family of

2p+1 null hypotheses {(M ∈ I,M ∈ S),M ⊆ F} should be at

most α

Uncertainty set

Ûα = models that are not in Ŝα or Îα



F test statistic

TFM =
‖µ̂M − µ̂F‖2

σ̂2F
with σ̂2F =

‖µ̂F − y‖2

n − p
Correct full model assumption

TFM ∼ (p −m)F ′p−m,n−p(λFM)

First-order misspecification

TFM ∼ (p −m)F ′′p−m,n−p(λFM , λF )

No testing for superiority

?
st
≤ F ′′p−m,n−p(λFM , λF )

st
≤ F ′p−m,n−p(λFM)



Scheffé’s adjustment

Maximum test statistic

TF∅ = max
M⊆F

TFM ∼ pF ′′p,n−p(λF∅, λF )

Confidence set

Îα = {M ⊆ F : TFM > pf ′
1−α
p,n−p(p)}
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Prostate cancer data: n = 67, p = 8

CP BIC LASSO FS

lcavol • • • •
lweight • • • •
age •
lbph • •
svi • • •
lcp •
gleason

pgg45 •

CP best subsets with min CP/AIC

BIC best subsets with min BIC

LASSO 10-fold CV with 1-SE rule (Hastie et al. 2009)

FS forward stop rule on LAR path at 10% FDR (G’Sell et al. 2016)



Raw rejections

model size
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Uncertainty u5% = 54.1 %

model size
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Predictions

0
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TFM
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Explanatory modeling

Correct (unbiased) and wrong (biased) models

• C = {M ∈M : λM = 0}
• W = {M ∈M : λM > 0}

Confidence for correct models?

• Null M ∈ W against point alternative M ∈ C implies α power

• Confidence for wrong models only: P(Ŵα ∩ C = ∅) ≥ 1− α

More power

• C ⊆ S
• W ⊇ I implies a more powerful confidence set Ŵα ⊇ Îα



Adequate Models

Adequate and non-adequate models

• A = {M ∈M : λFM = 0}
• B = {M ∈M : λFM > 0}

with C ⊆ A ⊆ S and I ⊆ B ⊆ W

Mallows (1973)

Assumption “correct full model” and Scheffé’s adjustment

Spjøtvoll (1977)

Assumption “correct full model” and closed testing adjustment



Scheffé’s adjustment: u5% = 32.5 %

model size
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Closed testing adjustment: u5% = 18.8 %

model size
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Summary

Training set: n = 67

Inference Adjustment Size Uncertain u5%

Inferior Scheffé 117 138 54.1 %

Non-adequate Scheffé 172 83 32.5 %

Non-adequate Closed testing 207 48 18.8 %

Training + test: n = 97

Inference Adjustment Size Uncertain u5%

Inferior Scheffé 136 119 46.6 %

Non-adequate Scheffé 179 76 29.8 %

Non-adequate Closed testing 223 32 12.5 %
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Discussion

Measuring uncertainty

is a statistician’s task

Uncertainty in variable selection

High even for ‘small’ problems,

especially in the presence of collinearity

High-dimensional data

p � n : strong assumptions needed
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