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What | hope to accomplish in this talk

» Weighted testing has the potential to improve power and precision in
modern data-centered research (e.g., genomics)

» However, current methods do not address imporant practitioner priorities

> Present Princessp, a weighting methodology using convex optimization



The potential of weighting

» Modern science: Test large number of hypotheses, only few of interest

» genomics: millions of genetic variants — phenotype
» neuroscience: stimulus — thousands of voxels

v

State of the art: Treat all hypotheses equally

» Opportunity: Previous information

v

Weighted testing: Improve power, precision



Example: Genome-Wide Association Studies

» Test associations between 500K-2million genetic variants (Single
Nucleotide Polymorphisms SNPs) and phenotype (e.g., heart disease)

» Workhorse of genomics, hundreds of studies

Figure : Chromosome 1 significant SNPs from GWAS catalog



Example: a Longevity GWAS. Fortney et al. (2015)
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Lessons learned from the longevity GWAS

» Weighting is useful in low-power settings
» Previous methods methods do not address practitioner priorities

> Need to develop new approaches
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Optimal weighting

v

Null hypothesis H;: e.g., i-th SNP is not associated to longevity
Weighted Bonferroni method:

> reject H; if P; < aw;

> weights w; > 0, Z,.le w; =1

v

v

Controls family-wise error rate (FWER), the probability of any errors

» Optimize expected number of discoveries (Spjgtvoll, 1972; Benjamini
and Hochberg, 1997; Rubin et al., 2006; Roeder and Wasserman, 2009)
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Optimal weighting: Example
» Normal test H; : uj = 0 against p; < 0. Plot w; = w(;)

Spjotvoll weights
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Practitioner priorities are not addressed

> Need not be monotone in the effect sizes p;
» Can be very close to zero—weighted p-values p;/w; are unstable

» Can't add further constraints (e.g., grouping)
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Princessp: New principled p-value weights

> Princessp: new approach to weighted Bonferroni multiple testing
» Employs convex optimization

1. Allows constraints—e.g., monotonicity, bounds
2. Scales to very large problem sizes

» Key practitioner priorities are addressed



Princessp: New approach based on convex optimization

» f,: R’ 5 R, k=1,...,K convex, smooth.
J
max, ;PH;—l(Pi < aw;)
sit. fi(w) <0, k=1,...,K
Aw = b.
» Key: ROC curve @ — Py—1(P < «) is often concave

v

Previous formulations use critical values, non-convex (Westfall et al.,
1998; Rubin et al., 2006; Roeder and Wasserman, 2009)

The first time convexity is exploited for weighting

v



Well-known concave ROC curves

» One-sided tests in monotone likelihood ratio (MLR) families (e.g.,
Lehmann and Romano, 2005, p.101)

» Natural param of continuous 1D exponential family
» Non-centrality param in t, F, x? distribution

» Princessp applicable



New results on concave ROC curves

Two-sided tests in continuous 1D exponential families.
» T ~exp(0t — A(0))du(t). Test 0 = 0y against 6 # 6. Reject if

|T — 90| > C.
Proposition
1. If]61] > |60|, the ROC curve at 0y is concave.
2. If |61] > 2|6o|, the ROC curve at 0y is strongly concave on (0,1 — ¢),
e>0.

(Strong concavity needed for numerics.)



Monotone bounded weights in Princessp framework

> wi < wjif |pi| <
> 0</<w;<u
» In Dobriban (2016)

1. Large-scale algorithm (subsampled interior point)
2. GWAS example (weights work well)



Monotone bounded weights. w; = w( ;)
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Conclusion

> Princessp, a flexible weighting methodology using convex optimization
> Addresses practitioner priorities: constraints, large-scale applications

» Potential to improve power and precision

E. Dobriban, Weighted mining of massive collections of p-values by convex
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