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Introduction

The two-stage ‘learn and confirm’ strategy is widely
implemented:

I Seamless phase II/III trials

I Biomarker research

I Genome wide association study (GWAS)

Ranking and selecting candidates can induce bias into
estimates at study completion.
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An unbiased estimator can easily be found by just using the
stage 2 data.

However, this estimator suffers from lower precision.

Instead we seek an efficient unbiased estimator that uses data
from both stages.

Take the expectation of the stage 2 data, conditional on the
stage 1 data and selection rules.

The resulting estimator is the UMVCUE: uniformly minimum
variance conditionally-unbiased estimator.

I Lower variance than any other unbiased estimator.
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Unbiased estimation in two-stage framework introduced by
Cohen and Sackrowitz (1989).

Key assumption in the literature is that the stage 1 population
parameter estimates are independent random variables.

This may not be a reasonable assumption to make!
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In the GWAS setting, SNPs on the same genomic region may
be in linkage disequilibrium.

In biomarker trials, measurements of different biomarkers may
be correlated within each person.

In a multi-arm adaptive trial with common control group, the
estimates of each treatment’s benefit over the control are
correlated by definition.
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General framework

Stage 1

K correlated continuous stage 1 parameter estimates
X = (X1, . . . ,XK ).

X ∼ N(µ,V ) where µ is vector of unknown means and
V = (Vij) is known covariance matrix.

Ordered stage 1 estimates X(i), where X(1) ≥ · · · ≥ X(K).

Let σ2
i = Vii for i = 1, . . . ,K .

David Robertson Unbiased estimation in two-stage designs 7



Introduction General framework GWAS data Seamless phase II/III trials Summary

Stage 2

Let Yj be stage 2 estimate of jth ranked candidate, where
Yj ∼ N(µ(j), τ

2
j ).

At the end of stage 2, the aim is to efficiently estimate µ(j).

Estimation

The MLE for µ(j) is weighted average of the data:

µ̂(j) =
τ2
j X(j) + σ2

(j)Yj

σ2
(j) + τ2

j

.

The MLE is biased because it does not take into account the
selection rules or correlation.

The stage 2 data Yj is unbiased, but has lower precision.
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Calculating the UMVCUE

Let Q be the event {X : X1 ≥ · · · ≥ XK}.
Without loss of generality, we condition on Q.

The statistic Zj = (Z1j , . . . ,ZKj) is sufficient and complete for
µ = (µ1, . . . , µK ), where

Zij = Xi +
Vij

τ2
j

Yj

We have a closed-form expression for the UMVCUE for µj ,
which we can write as

UMVCUE = MLE + Bias.
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The UMVCUE for µj given Q is

Ûj =
τ2
j Zjj

σ2
j + τ2

j

−
τ2
j√

σ2
j + τ2

j

φ(W1)− φ(W2)

Φ(W1)− Φ(W2)

where

Wi =
ki
√
σ2
j + τ2

j

τ2
j

−
Zjj√
σ2
j + τ2

j

for i = 1, 2

k1 = min(A1), k2 = max(A2),

A1 =

{
τ2
j (Zij − Zi+1,j)

Vij − Vi+1,j
: Vij > Vi+1,j ; i = 1, . . . ,K − 1

}
,

A2 =

{
τ2
j (Zij − Zi+1,j)

Vij − Vi+1,j
: Vij < Vi+1,j ; i = 1, . . . ,K − 1

}
.
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Application to GWAS data

We apply our methodology to data from a GWAS for Crohn’s
disease by the Welcome Trust Case Control Consortium.

Identified 12 SNPs associated with disease status at
genome-wide significance.

A replication study was then reported by Parkes et al. (2007)
in a follow-up cohort.

This is a two-stage design with a genome-wide association
study (stage 1) followed by a replication study (stage 2).

David Robertson Unbiased estimation in two-stage designs 11



Introduction General framework GWAS data Seamless phase II/III trials Summary

The table below shows the estimated odds ratios (ORs) for
stages 1 and 2, as well as the overall MLE.

The UMVCUEs are calculated assuming that log ORs for the
SNPs are uncorrelated.

Chr SNP Stage 1 Stage 2 MLE UMVCUE

5p13 rs17234657 1.55 1.16 1.39 1.16
5p13 rs9292777 1.38 1.34 1.37 1.39
10q24 rs10883365 1.27 1.18 1.24 1.16
18p11 rs2542151 1.35 1.15 1.27 1.15
5q33 rs13361189 1.51 1.38 1.46 1.40
3p21 rs9858542 1.26 1.17 1.22 1.17
5q33 rs4958847 1.35 1.36 1.36 1.35
5q23 rs10077785 1.29 1.19 1.25 1.19
1q24 rs12035082 1.22 1.14 1.19 1.15
21q22 rs2836754 1.22 1.15 1.19 1.16
1q31 rs10801047 1.38 1.47 1.42 1.44
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The 1st and 2nd ranked SNPs are on 5p13.

The 5th and 7th ranked SNPs are on 5q33.

A natural question to ask is how the OR estimates are
affected by linkage disequilibrium.

Only those SNPs that meet a selection criteria in stage 1
continue to stage 2.

We extend our framework to account for ranking by p-value:

Q2 =

{
X :
|X1|
σ1
≥ |X2|

σ2
≥ · · · ≥ |XK |

σK
≥ Φ−1(1− pcrit/2)

}
.
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Results

We take each pair of SNPs on the same chromosomal region
and calculate the UMVCUE as the correlation between the
log ORs change.

We assume the log ORs Xj1 and Xj2 follow a bivariate normal
distribution, with correlation coefficient ρ(

Xj1

Xj2

)
∼ N

((
µj1
µj2

)
,

(
σ2
j1

ρσj1σj2
ρσj1σj2 σ2

j2

))
.
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Can also construct confidence intervals using parametric bootstrap:
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Seamless phase II/III trials

Starting point is the adaptive seamless design (ASD) used in
Kimani et al. (2013).

Consider an ASD where stage 1 is used to select the most
promising treatment and stage 2 is for confirmatory analysis.

Assume stage 1 sample means Xi ∼ N(µi , σ
2
1i ).

Let n1i denote the number of subjects allocated to treatment i
in stage 1, where i = 0 corresponds to the control treatment.
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At the end of stage 1, rank the treatments according to their
standardised treatment difference:

Xi − X0√
Var(Xi − X0)

≥
Xj − X0√

Var(Xj − X0)

=⇒ Xi − X0√
σ2

1i + σ2
10

≥
Xj − X0√
σ2

1j + σ2
10

Let the treatment with the highest ranking be denoted by S .

Early stopping of the trial for futility: the trial continues to
stage 2 if XS−X0√

σ2
1S+σ2

10

≥ b.
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Stage 2 sample means Yi ∼ N(µi , σ
2
2i ).

Let n2i denote the number of subjects allocated to
treatment i (i = 0, S) in stage 2.

If there is a common variance σ2, then σ2
2i = σ2/n2i .

Aim: to estimate the treatment difference θS = µS − µ0.
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If we have unequal treatment effect variances, using the
theory for the multivariate normal setting, we can derive the
UMVCUE.

Let Θi = Xi − X0 denote the stage 1 sample mean treatment
difference for treatment i . Then Θi ∼ N

(
µi − µ0, σ

2
1i + σ2

10

)
.

Θ follows a multivariate normal distribution with mean
θ = (θ1, . . . , θK ) and covariance matrix Σ, where θi = µi − µ0

and Σij = Cov(Θi ,Θj). Hence

Σii = σ2
1i + σ2

10 i ∈ {1, . . . ,K}
Σij = σ2

10 i , j ∈ {1, . . . ,K} , i 6= j

Note how the treatment differences are correlated in this
framework.
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Multiple testing with the closure principle

Now look at the context of formal hypothesis testing.

For a single null hypothesis H with first stage p-value p1, the
trial is stopped early if p1 > α0.

Assume we are testing K directional null hypotheses
Hi : µi ≤ µ0, comparing the K treatments with the control.

Want to strongly control the familywise error rate (FWER) at
a pre-specified level α.

Control the FWER strongly using the closure principle (CP).
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UMVCUE with Bonferonni correction

Consider using the closed testing procedure for the stage 1
data with early stopping for futility, using the Bonferonni
correction for multiplicity.

Stage 1 (unadjusted) p-values p1,i

p1,i = 1− Φ

 Xi − X0√
σ2

1i + σ2
10



Let r(Xi ) =
Xi − X0√
σ2

1i + σ2
10
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Comparing K = 2 treatments with control:

H{1,2}
p1,{1,2} = 2 min(p1,1, p1,2)

ww ''
H1
p1,1

H2
p1,2

The Bonferroni adjusted first stage p-value p1,{1,2} for the
intersection hypothesis H{1,2} is

p1,{1,2} = 2 min(p1,1, p1,2) = 2

[
1− Φ

(
max

i∈{1,2}
r(Xi )

)]
.
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By the CP, treatment j ∈ {1, 2} continues to stage 2 if

p1,{1,2} < α0 =⇒ max
i∈{1,2}

r(Xi ) > Φ−1(1− α0/2)

p1,j < α0 =⇒ r(Xj) > Φ−1(1− α0)

Suppose treatment 1 is ranked above treatment 2, i.e.
r(X1) > r(X2).

Then maxi∈{1,2} r(Xi ) = r(X1), and treatment 1 continues to
stage 2 if r(X1) > Φ−1(1− α0/2).

So conditional on Q = {X : r(X1) > r(X2)}, the UMVCUE for
θ1 = µ1 − µ0 fits into the model framework, where
b = Φ−1(1− α0/2).
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H{1,2,3}
p1,{1,2,3} = 3 min(p1,1, p1,2, p1,3)

tt �� **
H{1,2}

p1,{1,2} = 2 min(p1,1, p1,2)

��
**

H{1,3}
p1,{1,3} = 2 min(p1,1, p1,3)

tt **

H{2,3}
p1,{2,3} = 2 min(p1,2, p1,3)

��
ttH1

p1,1

H2

p1,2

H3

p1,3
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Example

Compare three experimental drugs with a placebo for the
treatment of generalised anxiety disorder. Outcomes are
normally distributed with common standard deviation σ = 6.

Trial is planned with equal allocations to each treatment, with
n1 = n2 = 71 subjects per group, but the randomisation
procedure used leads to an unequal allocations.

Stage 1 Stage 2

n1i Observed z-statistic p1i n2i Observed

Placebo 70 0.4 — — 68 −0.3
Treatment 1 72 2.2 1.787 0.0369 75 1.7
Treatment 2 68 2.4 1.958 0.0251 70 2.2
Treatment 3 74 3.2 2.799 0.0026 71 1.9
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Aim is to take forward as many treatments as possible that
pass a first stage p-value futility threshold, set at α0 = 0.1.

Stage 1 Bonferroni-adjusted p-values are:

p1,{1,2,3} = 0.0077

p1,{1,2} = 0.0503, p1,{1,3} = 0.0051, p1,{2,3} = 0.0051

p1,1 = 0.0369, p1,2 = 0.0251, p1,3 = 0.0026

All of the adjusted p-values are less than α0 =⇒ all of the
treatments (and placebo) continue to stage 2.
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Stage 1 Rank Treatment Stage 2 Näıve UMVCUE

1 3 2.200 2.505 2.285
2 2 2.500 2.250 2.020
3 1 2.000 1.900 2.062

The Kimani estimator for treatment 3 is 2.197, using a pooled
variance.
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Summary

We have a general framework for unbiased estimation in
two-stage trials in the presence of selection and correlation.

The UMVCUE can be decomposed into the MLE + Bias.

It is important to correctly account for correlation – the
UMVCUE that ignores correlation can be substantially biased.

Our estimation strategy can be applied in practice to the
GWAS and seamless phase II/III trial settings.

Further work:

I Construction of confidence intervals
I Multi-stage trials
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UMVCUE for two-sided test

The UMVCUE for µj given Q2 is

Ûj =
τ2
j Zjj

σ2
j + τ2

j

−
τ2
j√

σ2
j + τ2

j

∑M
i=1 φ(W1i )− φ(W2i )∑M
i=1 Φ(W1i )− Φ(W2i )

where

W1i =
bi
√
σ2
j + τ2

j

τ2
j

−
Zjj√
σ2
j + τ2

j

, W2i =
ai
√
σ2
j + τ2

j

τ2
j

−
Zjj√
σ2
j + τ2

j

,

M⋃
i=1

[ai , bi ] =

(
K−1⋂
i=1

(A1i ∩ A2i ) ∪ (A3i ∩ A4i )

)
∩ (A5 ∪ A6)

A1i =
{
Y : (σiVi+1,j − σi+1Vij)Y ≥ τ2

j (σiZi+1,j − σi+1Zij)
}
,

A2i =
{
Y : (σiVi+1,j + σi+1Vij)Y ≤ τ2

j (σi+1Zij + σiZi+1,j)
}
,

A3i =
{
Y : (σiVi+1,j + σi+1Vij)Y ≥ τ2

j (σi+1Zij + σiZi+1,j)
}
,

A4i =
{
Y : (σiVi+1,j − σi+1Vij)Y ≤ τ2

j (σiZi+1,j − σi+1Zij)
}
,

A5 =
{
Y : VKjY ≤ τ2

j

[
ZK − σKΦ−1(1− pcrit/2)

]}
,

A6 =
{
Y : VKjY ≥ τ2

j

[
ZK + σKΦ−1(1− pcrit/2)

]}
.
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UMVCUE for treatment difference

The UMVCUE for θ1 = µ1 − µ0 given Q is

Û =
τ2Z1

ν2 + τ2
− τ2

√
ν2 + τ2

φ(W1)− φ(W2)

Φ(W1)− Φ(W2)

where

Wi =
ki
√
ν2 + τ2

τ2
− Z1√

ν2 + τ2
for i = 1, 2

k1 = min(A1,A2,A3), k2 = max(A4,A5),

A1 =
τ2

ν2

(
Z1 −

b

λ1

)
A2 =

{
τ2(λ1Z1 − λ2Z2)

σ2
10(λ1 − λ2) + λ1σ2

11

: λ1σ
2
11 > (λ2 − λ1)σ2

10

}
,

A3 =

{
τ2(λjZj − λj+1Zj+1)

σ2
10(λj − λj+1)

: σ2
1,j+1 > σ2

1j ; j = 2, . . . ,K − 1

}
,

A4 =

{
τ2(λ1Z1 − λ2Z2)

σ2
10(λ1 − λ2) + λ1σ2

11

: λ1σ
2
11 < (λ2 − λ1)σ2

10

}
,

A5 =

{
τ2(λjZj − λj+1Zj+1)

σ2
10(λj − λj+1)

: σ2
1,j+1 < σ2

1j ; j = 2, . . . ,K − 1

}
.
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