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Introduction

Introduction

@ The two-stage ‘learn and confirm' strategy is widely
implemented:

» Seamless phase II/Ill trials
» Biomarker research

» Genome wide association study (GWAS)

@ Ranking and selecting candidates can induce bias into
estimates at study completion.
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Introduction

@ An unbiased estimator can easily be found by just using the
stage 2 data.

@ However, this estimator suffers from lower precision.

@ Instead we seek an efficient unbiased estimator that uses data
from both stages.
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Introduction

An unbiased estimator can easily be found by just using the
stage 2 data.

However, this estimator suffers from lower precision.

Instead we seek an efficient unbiased estimator that uses data
from both stages.

Take the expectation of the stage 2 data, conditional on the
stage 1 data and selection rules.

@ The resulting estimator is the UMVCUE: uniformly minimum
variance conditionally-unbiased estimator.

» Lower variance than any other unbiased estimator.
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Introduction

@ Unbiased estimation in two-stage framework introduced by
Cohen and Sackrowitz (1989).

@ Key assumption in the literature is that the stage 1 population

parameter estimates are independent random variables.

@ This may not be a reasonable assumption to make!

David Robertson Unbiased estimation in two-stage designs 5



Introduction

@ In the GWAS setting, SNPs on the same genomic region may
be in linkage disequilibrium.

@ In biomarker trials, measurements of different biomarkers may
be correlated within each person.

@ In a multi-arm adaptive trial with common control group, the

estimates of each treatment’s benefit over the control are
correlated by definition.
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General framework

General framework

Stage 1

@ K correlated continuous stage 1 parameter estimates
X=(Xg,...,Xk).

@ X ~ N(u, V) where p is vector of unknown means and
V = (Vj;) is known covariance matrix.

o Ordered stage 1 estimates X(;), where X(1) > - > X(x).

° Leta,?:\/,-,-forizl,...,K.
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General framework

Stage 2

@ Let Y; be stage 2 estimate of jth ranked candidate, where
Y ~ N(ug, 7).
o At the end of stage 2, the aim is to efficiently estimate ).

Estimation

@ The MLE for ;) is weighted average of the data:

2 2 v
i) = T Xy + 935 Y
= 2 2 -
oG5 T
@ The MLE is biased because it does not take into account the
selection rules or correlation.

@ The stage 2 data Y] is unbiased, but has lower precision.
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General framework

Calculating the UMVCUE

o Let @ be the event {X: X3 > --- > Xk}.

@ Without loss of generality, we condition on Q.

o The statistic Z; = (Zy, ..., Zk;) is sufficient and complete for
w=(p1,...,0K), where

Zij=Xi+ 3

dm\g

@ We have a closed-form expression for the UMVCUE for 1,
which we can write as

UMVCUE = MLE + Bias.
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The UMVCUE for p; given Q is

I T ¢(Wh) — ¢(Wh)
J UJ?+TJ.2 /Ujg_i_TJ_z (W) — d(Wh)
where
kiy/o? + T2 7
W; - 2l for i =1,2
Tj UJ2 + 7'j2
kl = min(Al), k2 = max(Az),
2
77 (Zj = Zit1))
A 4 V> Vi i=1,...,K—-1
1 { ‘/’J _ \/i+1,j y > i+1j 1 ) ) s
Az

ST TNy Vi =1, K =1,
Vii — Vig1 Y R }
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GWAS data

Application to GWAS data

@ We apply our methodology to data from a GWAS for Crohn's
disease by the Welcome Trust Case Control Consortium.

o Identified 12 SNPs associated with disease status at
genome-wide significance.

@ A replication study was then reported by Parkes et al. (2007)
in a follow-up cohort.

@ This is a two-stage design with a genome-wide association
study (stage 1) followed by a replication study (stage 2).
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GWAS data

@ The table below shows the estimated odds ratios (ORs) for
stages 1 and 2, as well as the overall MLE.

@ The UMVCUEs are calculated assuming that log ORs for the
SNPs are uncorrelated.

Chr SNP Stage 1 Stage2 MLE UMVCUE
5p13 rs17234657 1.55 1.16 1.39 1.16
5pl13  rs9292777 1.38 1.34 1.37 1.39
10924 rs10883365 1.27 1.18 1.24 1.16
18pll rs2542151 1.35 1.15 1.27 1.15
5q33 rs13361189  1.51 1.38 1.46 1.40
3p21  rs9858542 1.26 1.17 1.22 1.17
5q33 rs4958847 1.35 1.36  1.36 1.35
523  rs10077785 1.29 1.19 1.25 1.19
1924  rs12035082 1.22 1.14 1.19 1.15
21922 rs2836754 1.22 1.15 1.19 1.16
1g31  rs10801047 1.38 1.47 1.42 1.44
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GWAS data

The 1st and 2nd ranked SNPs are on 5p13.
The 5th and 7th ranked SNPs are on 5q33.

@ A natural question to ask is how the OR estimates are
affected by linkage disequilibrium.

Only those SNPs that meet a selection criteria in stage 1
continue to stage 2.

@ We extend our framework to account for ranking by p-value:

o1 o) OK

02—{X:‘Xl'zM>--~2’X"'z¢—1(1—Pcrit/2)}~
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GWAS data

Results

@ We take each pair of SNPs on the same chromosomal region
and calculate the UMVCUE as the correlation between the
log ORs change.

@ We assume the log ORs X}, and Xj, follow a bivariate normal
distribution, with correlation coefficient p

9 2 .
X; W) \pojoj, 0%
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GWAS data
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GWAS data

Can also construct confidence intervals using parametric bootstrap:
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Seamless phase I1/l1l trials

Seamless phase I1/11l trials

e Starting point is the adaptive seamless design (ASD) used in
Kimani et al. (2013).

o Consider an ASD where stage 1 is used to select the most
promising treatment and stage 2 is for confirmatory analysis.

o Assume stage 1 sample means X; ~ N(u;,0%.).

@ Let ny; denote the number of subjects allocated to treatment /
in stage 1, where i = 0 corresponds to the control treatment.

David Robertson Unbiased estimation in two-stage designs 17



Seamless phase I1/l1l trials

@ At the end of stage 1, rank the treatments according to their
standardised treatment difference:

X,' — Xo XJ - XO
>
VVar(X; — Xo) — /Var(X; — Xo)
Xi — Xo - X; — Xo

2 2 2 2
a1 + 1o \/01j+010

@ Let the treatment with the highest ranking be denoted by S.

e Early stopping of the trial for futility: the trial continues to
stage 2 if % > b.

= >
V 915110
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Seamless phase I1/l1l trials

o Stage 2 sample means Y; ~ N(u;,03;).

@ Let np; denote the number of subjects allocated to
treatment / (i = 0, S) in stage 2.
@ If there is a common variance o2, then a%,- = 02/n2,-.

@ Aim: to estimate the treatment difference 0s = us — uo.
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Seamless phase I1/l1l trials

@ If we have unequal treatment effect variances, using the
theory for the multivariate normal setting, we can derive the
UMVCUE.

o Let ©; = X; — Xp denote the stage 1 sample mean treatment
difference for treatment /. Then ©; ~ N (u,- — o, a%,- + O'%O).

@ O follows a multivariate normal distribution with mean
0 = (61, ...,0k) and covariance matrix ¥, where 0; = u; — po
and ¥;; = Cov(©;, ©;). Hence

Z,‘,':O'%I'“FU%O /G{l,,K}
Y=ok ijef{l,... K}, i#]

@ Note how the treatment differences are correlated in this
framework.
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Seamless phase I1/l1l trials

Multiple testing with the closure principle

Now look at the context of formal hypothesis testing.

For a single null hypothesis H with first stage p-value pi, the
trial is stopped early if p1 > ag.

@ Assume we are testing K directional null hypotheses
H;i : pi < po, comparing the K treatments with the control.

Want to strongly control the familywise error rate (FWER) at
a pre-specified level «.

Control the FWER strongly using the closure principle (CP).
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Seamless phase I1/l1l trials

UMVCUE with Bonferonni correction

@ Consider using the closed testing procedure for the stage 1
data with early stopping for futility, using the Bonferonni
correction for multiplicity.

@ Stage 1 (unadjusted) p-values py

Xi — Xo

2 2
\/ 01 T 019

pi=1-0

Xi — Xo

2 2
\/ o1 T o1

o Let r(X,-) =

David Robertson Unbiased estimation in two-stage designs 22



Seamless phase I1/l1l trials

o Comparing K = 2 treatments with control:

Hia2)
P1{1,2} = 2min(p1 1, p12)

T

Hy Ho
P11 P12

e The Bonferroni adjusted first stage p-value p; 1 5} for the
intersection hypothesis Hy oy is

P1{12} = 2min(p1,1, p1,2) = 2 [1 -¢ <i€r?f>§} r(Xi)>] :
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Seamless phase I1/l1l trials

@ By the CP, treatment j € {1,2} continues to stage 2 if
P1,{12} < @0 ien?i)é} f( /) ( ag/ )
p1j <ap — r(X_,) > (Dfl(l — Ozo)

@ Suppose treatment 1 is ranked above treatment 2, i.e.
r(Xl) > I‘(XQ).

® Then maxjc(y 2y r(Xi) = r(X1), and treatment 1 continues to
stage 2 if r(X1) > @711 — ap/2).

@ So conditional on Q = {X: r(X1) > r(X2)}, the UMVCUE for

01 = p1 — po fits into the model framework, where
b=o"11—ap/2).
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Seamless phase I1/l1l trials

Hi12.3)
P1{123} = 3min(py1, P12, P1.3)

— 1 T

Hi2y Hi gy Hia 3y
PL{12} = Qm'n (P11, p1,2) P1{1,3) = 2min(p11, p1,3) PL{23} = 2mln(P12 p13)
B K K '
P12 P13
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Seamless phase I1/l1l trials

Example

@ Compare three experimental drugs with a placebo for the
treatment of generalised anxiety disorder. Outcomes are
normally distributed with common standard deviation o = 6.

@ Trial is planned with equal allocations to each treatment, with
ny = ny = 71 subjects per group, but the randomisation
procedure used leads to an unequal allocations.

Stage 1 Stage 2

ny; Observed z-statistic py; np;  Observed
Placebo 70 0.4 — — 68 —-0.3
Treatment 1 72 2.2 1.787 0.0369 75 1.7
Treatment 2 68 2.4 1.958 0.0251 70 2.2
Treatment 3 74 3.2 2.799 0.0026 71 1.9
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Seamless phase I1/l1l trials

@ Aim is to take forward as many treatments as possible that
pass a first stage p-value futility threshold, set at ag = 0.1.

@ Stage 1 Bonferroni-adjusted p-values are:

P1,{1,2,3} = 0.0077
p17{172} = 00503, p17{1’3} = 00051, p17{2’3} = 0.0051
p11 = 0.0369, p1, = 0.0251, p; 3 = 0.0026

@ All of the adjusted p-values are less than ag = all of the
treatments (and placebo) continue to stage 2.

David Robertson Unbiased estimation in two-stage designs 27



Seamless phase I1/l1l trials

Stage 1 Rank Treatment Stage2 Naive UMVCUE

1 3 2.200 2505 2.285
2 2 2.500 2.250 2.020
3 1 2.000 1.900 2.062

The Kimani estimator for treatment 3 is 2.197, using a pooled
variance.
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Summary

Summary

@ We have a general framework for unbiased estimation in
two-stage trials in the presence of selection and correlation.

@ The UMVCUE can be decomposed into the MLE + Bias.

@ It is important to correctly account for correlation — the
UMVCUE that ignores correlation can be substantially biased.

@ Our estimation strategy can be applied in practice to the
GWAS and seamless phase Il/1ll trial settings.

@ Further work:

» Construction of confidence intervals
» Multi-stage trials
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Summary
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UMVCUE for two-sided test

UMVCUE for two-sided test

The UMVCUE for y; given @ is

f_ T4 T Y e(Wh) — d(Wai)
T 2 2 S e(Wy) - o(Wa)
where
biy/o? + 72 7. aj\Jo? + 72 7.
J J J J
Wi = 2 - £l 5 Wi = > - e )
Tj 012 +7 2 TJ (1'12 + TJ2

M K-1
Ular, bi] = ( () (A N Azi) U (Asi N A4,-)> N (As U Ag)
i=1 i=1

Ay = {Y ( l+1J —Oit+1 Vu)y > T ( I+1,J U’+1Z’J)}

Agi ={Y i (0iVigrj+ 0iaVy)Y < (01 Z5 + 0iZi1) }
As; = {Y (o ,+1d+0,+1\/y)Y>7' (0ir1Zj +oi I+1J)}

Az ={Y ( )}

As ={Y : VigY <7 2 (Zk — ok ®(1 - paric/2)] }

Ao ={Y : VigY > 77 [Zi + ok ® (1 — perit/2)] } -

Ul i+1j — Oi+1 Vlj)Y < T (GIZI+11 - UH—IZU
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UMVCUE for maximum treatment difference

UMVCUE for treatment difference

The UMVCUE for 6, =

— po given Q is

e 7z T 9(W) - (W)
2412 V242 O(Wh) - o(Wh)

where

W, =

kivv2 + 72 B Z1
7 N
k1 = min(Al,Az,A3), k2 = max(A4,A5),

72 b
w5 2)

(M2 — Ma2s) 5 5
CA > (A — A
O-%O /\1 /\2)+)\10'1 1711 (2 1)010 ’
TNZ = Nr1Zi1) |

2 .
: 1 >0 =2,..., K—-15,
{ ”10)‘ 1) O1j+1 > 9154 J RERE! }

fori=1,2

)\121 (M4 = D) 2 2
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