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Abstract 
Biomarker Subgroup Testing, Misclassification, and Missing Data  
The objective of precision medicine has been stated as treating the “right 
patient with the right drug at the right time”.  Many predictive biomarkers 
facilitate precision medicine by explaining a clinically significant amount of 
the variation in a treatment effect.  The anticipation that the treatment will 
only be effective in a biomarker-defined subgroup means that many proposed 
procedures for testing treatment effect overall and in one or more biomarker-
defined subgroups are unsatisfactory.  The clinical objective is not to find the 
largest population in whom statistical significance of the treatment effect is 
retained, but to determine the population (if it exists) in whom the effect is 
homogeneous and clinically significant.  In this talk, we’ll discuss frequentist 
and Bayesian testing procedures that have been designed to address the 
clinical objective of predictive biomarkers.  We’ll also quantify how biomarker 
measurement error attenuates the difference in treatment effect between 
biomarker defined subgroups.  We’ll also show that missing biomarker results 
(e.g., specimens unavailable or unevaluable for biomarker testing) can be 
addressed with Bayesian selection models even when minimal assumptions 
on the missing data mechanism mean that model parameters aren’t fully 
identified. 

2 



Outline 

• Biomarker Intended Uses  
• Biomarker Device (Test) Evaluation 
• Biomarker Subgroup Evaluation 

– Companion, Complementary Diagnostics 
– Frequentist, Bayesian 

• Biomarker Misclassification 
• Missing Data 
• Concluding Remarks 
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Intended Uses for Biomarkers 

• Diagnosis, in symptomatic patients. 
• Screening, in asymptomatic patients. 
• Early detection, enabling intervention at an earlier and 

potentially more curable stage than under usual clinical 
diagnostic conditions. 

• Monitoring, e.g., of disease response during therapy, with 
potential for adjusting level of intervention (e.g. dose) on a 
dynamic and personal basis. 

• Risk assessment, leading to preventive interventions for those 
at sufficient risk. 

• Prognosis, allowing for more (less) aggressive therapy for 
patients with worse (better) prognosis. 

• Prediction of safety or efficacy of a specific therapy to aid 
benefit/risk assessment in individual patients (e.g., predict 
response, predict SAE, monitor response to adjust schedule or 
dose or discontinue). 

Last three involve prediction of a future state of health. 
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Test Performance Evaluation  

• Analytical performance - does my test measure 
the analyte I think it does?  Correctly? How 
reliably? 
 

• Clinical performance - does my test result 
correlate with target condition of interest in a 
clinically significant way?   
 

• Clinical Utility -  does my test support clinical 
decisions for patient management such as 
effective treatment or preventive strategies? 
 



Fryback-Thornbury Model 

•6 

Level Objective Study Type* 
1 Technical efficacy  Analytical performance  

2 Diagnostic accuracy efficacy  Clinical performance 

3 Diagnostic thinking efficacy  
4 Therapeutic efficacy 
5 Patient outcome efficacy  Clinical outcome 

6 Societal efficacy 
Fryback DG and Thornbury JR. The Efficacy of Diagnostic Imaging. 
Med Decis Making 1991; 11(2): 88-94. 
*FDA CDRH/CBER Guidance. Design Considerations for Pivotal 
Clinical Investigations for Medical Devices, 2013 (Sections 7.7, 8).  



Analytical Performance Studies 
• Bias, relative to a reference method for measuring analyte. 
• Precision. Measurement variation in repeated testing.  

– repeatability of the test result taken under the same set of 
conditions (e.g., testing sample replicates in the same run)  

– reproducibility of test result taken under different conditions 
(e.g., testing sample replicates in different labs) 

• Limit of Detection. Smallest analyte level detected reliably.  
• Reagent Stability. Shelf-life, in-use, and shipment. 
• Analytical Specificity. Measurement of a specific analyte in 

the presence of potential interfering substances, cross-
reactivity, or cross-contamination.  

• Commutability of different sample types, when processed 
samples are used in place of clinical samples.  

7 

CLSI. A Framework for Utilizing CLSI Guidelines to Evaluate Clinical Laboratory 
Measurement Procedures; 2nd ed, CLSI report EP19. Wayne, PA: Clinical and 
Laboratory Standards Institute; 2015. 



Predictive, Prognostic Markers 
• Predictive biomarker informs on likely outcomes 

with specific treatments (e.g., relative sensitivity or 
resistance).  
– Other names: treatment selection biomarker, CDx 

• Prognostic biomarker is biological characteristic 
indicating likelihood of disease progression in a 
homogeneous population of patients, either not 
receiving therapy (natural course) or on a standard 
therapy. 
– inform on outcomes independent of specific treatment 

(i.e. in oncology, ability of tumor to proliferate, invade, 
and/or spread)  

8 

Yamauchi H, Stearns V, Hayes DF. When Is a Tumor Marker Ready for Prime Time? A Case Study 
of c-erbB-2 as a Predictive Factor in Breast Cancer. J Clin Oncol. 2001 Apr 15;19(8):2334-56. 

https://www.ncbi.nlm.nih.gov/pubmed/11304787


Intended Uses / Claims 
• Companion Diagnostic:  

– Provides information that is essential for the safe 
and effective use of a corresponding therapeutic 
product, allowing its benefits to exceed its risks.  

– E.g., defines the population for whom a 
therapeutic product is indicated. 

• Complementary Diagnostic:  
– Provides clinically useful information about a 

therapeutic product yet is not a prerequisite for 
the therapeutic product’s use (not an official FDA 
definition).  
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Qualitative Interaction 
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Polley MC, Freidlin B, Korn EL, Conley BA, Abrams JS, McShane LM. Statistical and 
Practical Considerations for Clinical Evaluation of Predictive Biomarkers, J Natl Cancer 
Inst;2013;105:1677–1683 



Quantitative Interaction 
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Polley MC, Freidlin B, Korn EL, Conley BA, Abrams JS, McShane LM. Statistical and 
Practical Considerations for Clinical Evaluation of Predictive Biomarkers, J Natl Cancer 
Inst;2013;105:1677–1683 



PD-L1 IHC 28-8 pharmDx 

• PD-L1 expression in tumor specimens from 
patients with non-small cell lung cancer (NSCLC) 
and melanoma. 

• Indications for Use 
– PD-L1 expression as detected by PD-L1 IHC 28-8 

pharmDx in non-squamous NSCLC may be associated 
with enhanced survival from OPDIVO ® (nivolumab). 

– Positive PD-L1 status as determined by PD-L1 IHC 28-8 
pharmDx in melanoma is correlated with the 
magnitude of the treatment effect on progression-free 
survival from OPDIVO®. 



PD-L1 IHC 28-8 pharmDx 

PD-L1 < 1% PD-L1 ≥ 1% 



Clinical Trial CA206097, Melanoma* 

 

*previously untreated, unresectable or metastatic melanoma 
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Interpretation and Causality 

• Cochran: What could be done to clarify the step 
from association to causation? 

• Fisher: Make your theories elaborate. 
• “… when constructing a causal hypothesis one 

should envisage as many different consequences 
of its truth as possible, and plan observational 
studies to discover whether each of these 
consequences is found to hold”.  
– Cochran WG. The planning of observational studies of 

human populations. JRSS A 1965; 234-266.  (p. 252).  
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FDA Guidance, Predictive Markers 
Alosh M, Fritsch K, Huque M, Mahjoob K, Pennello G, Rothmann M, 
Russek-Cohen E, Smith F, Wilson S, Yue L. Statistical Considerations on 
Subgroup Analysis in Clinical Trials, Statist Biopharm Res 2015; 7(4):286–
304.  
Beaver JA; Tzou A; Blumenthal GM; McKee AE; Kim G; Pazdur R; Philip R. 
An FDA Perspective on the Regulatory Implications of Complex Signatures 
to Predict Response to Targeted Therapies. Clin Cancer Res. 2017, 23 (6), 
1368-1372. 
US FDA. Guidance on Enrichment Strategies for Clinical Trials to Support 
Approval of Human Drugs and Biological Products. US FDA: Silver Spring, 
MD, 2012.  
US FDA. In Vitro Companion Diagnostic Devices, US FDA: Silver Spring 
MD, 2014.  
US FDA. Principles for Codevelopment of an In Vitro Companion 
Diagnostic Device with a Therapeutic Product. US FDA: Silver Spring MD, 
2016. 
US FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and 
other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug 
Administration (US); 2016. 
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Biomarker Subgroup Evaluations 



Purposes of Subgroup Evaluation 
1. Investigate the consistency of treatment 

effect across subgroups of clinical importance. 
2. Explore the treatment effect across different 

subgroups within an overall non-significant 
trial. 

3. Evaluate safety profiles limited to one or a few 
subgroup(s). 

4. Establish efficacy in the targeted subgroup 
when included in a confirmatory testing 
strategy of a single trial. 

 20 

Tanniou J, van der Tweel I, Teerenstra S, Roes KCB. Subgroup analyses in confirmatory clinical 
trials: time to be specific about their purposes. BMC Med Res Methodol. 2016 Feb 18; 16:20.  

https://www.ncbi.nlm.nih.gov/pubmed/26891992
https://www.ncbi.nlm.nih.gov/pubmed/26891992
https://www.ncbi.nlm.nih.gov/pubmed/26891992


Check Consistency Across Subgroups 

• Trial was designed to establish effectiveness in 
overall study population. 

• Heterogeneity of treatments effects not 
anticipated to have any particular pattern a 
priori (treatment effects exchangeable). 
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The Subgroup Problem 

 
 
 
 
 
 
 

• Subgroup specific treatment effects can be 
falsely significant (statistically, clinically). 
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Bayesian 

Gelman A, Hill J, Yajima M. Why We (Usually) Don't Have to Worry About 
Multiple Comparisons, J Res On Educational Effectiveness. 2012; 5: 189-211. 



Confirm Efficacy in Targeted Subgroup 

• All-comers trial: Test for treatment effect in 
targeted subgroup, complement, and overall. 

• Enrichment trial: Enroll targeted subgroup only. 
• Heterogeneity of treatments effects is 

anticipated to have a particular pattern a priori 
(treatment effects not exchangeable). 

• EX. A subgroup of cancer patients exhibiting the 
molecular target of a drug are expected to be 
more likely to respond to the drug than patients 
without the molecular target.  
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Companion Diagnostic (CDx) Test 

𝐻𝐻𝑂𝑂: treatment effect, overall 
𝐻𝐻𝑠𝑠: drug efficacy, test positive subset S 
𝐻𝐻𝑆𝑆𝑆: drug efficacy, test negative subset S’ 

• Clinical Objectives: Drug claim of efficacy for 
– test positive subset, or  
– overall 

 Freidlin B, Korn E, Gray R. Marker Sequential Test (MaST) design, Clin Trials 2014; 11: 19–27.  
Millen, B.A., Dmitrienko, A., Song, G. (2014). Bayesian assessment of influence and interaction 
conditions in multipopulation tailoring clinical trials. J Biopharm Stat. 2014;24(1):94-109. 
Rothmann M, Zhang, Lu, Fleming T. Testing in a Pre-specified Subgroup and the Intent-to-treat 
Population, Drug Inf J. 2012 Mar 1;46(2):175-179. 25 



Marker Sequential Test (MaST) 
αS < α = level of procedure 

 
 
 
 

 
If  HS rejected at αS, 
then  subgroup claim met,  
 if HS’ rejected at α,         overall claim met. 

else  if HO rejected at α – αS, overall claim met. 
 
 

rej. HS 
HS HS′ HO 

acc. HS 

αS α – αS  

ε 1–ε 

α – αS  

26 
Freidlin B, Korn E, Gray R. Marker Sequential Test (MaST) design, Clin Trials 2014; 11: 19–27.  
Bretz F, Maurer W, Brannath W, Posch M. Stat Med. 2009 Feb 15;28(4):586-604. 



Adaptive Designs 
• Adaptive sample size  
• Response Adaptive (enrollment, randomization)  
• Adaptive analysis (biomarker signature, threshold) 
• Biomarker analysis designs  

– Blur usual recommendation to perform development and 
validation phases on separate data sets.  

– Conceivable for pivotal validation of a CDx if analytical 
accuracy and reproducibility is exceptional and highly 
robust . 

– Cross-validated performance may not generalize out-of-
sample because classifier may have been fit to patient 
characteristics, specimen (or imaging) characteristics, and 
measurement errors (e.g., batch effects) that are peculiar 
to the training data set. 

27 
Baker SG, Kramer, BS, Sargent DJ, Bonetti M. Biomarkers, subgroup evaluation, 
and clinical trial design. Discov Med. 2012, 13 (70), 187–192. 



Subgroup Misclassification 



Subgroup Misclassification 

 Response    𝑅𝑅 = 0,1 (to treatment)  

 Biomarker    𝐵𝐵 = 0,1 (reference result) 

Measurement   𝐵𝐵∗ = 0,1 (test result) 

• Assume misclassification error of 𝐵𝐵  by 𝐵𝐵∗ is 
non-differential to outcome, that is 
 

𝐵𝐵∗|𝐵𝐵,𝑅𝑅 = 𝐵𝐵∗|𝐵𝐵 

i.e.,    𝑅𝑅|𝐵𝐵∗,𝐵𝐵 = 𝑅𝑅|𝐵𝐵 
29 



Subgroup Misclassification 

Consider 

𝐷𝐷 = Pr 𝑅𝑅 = 1 𝐵𝐵 = 1 − Pr 𝑅𝑅 = 1 𝐵𝐵 = 0  

𝐷𝐷∗ = Pr 𝑅𝑅 = 1 𝐵𝐵∗ = 1 − Pr 𝑅𝑅 = 1 𝐵𝐵∗ = 0  

Then  𝐷𝐷∗ = 𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁 − 1  

where   𝑃𝑃𝑃𝑃𝑃𝑃 = Pr 𝐵𝐵∗ = 1 𝐵𝐵 = 1  

𝑁𝑁𝑁𝑁𝑁𝑁 = Pr(𝐵𝐵∗ = 0|𝐵𝐵 = 0) 

 
 

30 Kuha, Skinner, Palmgren, 2005, “Misclassification Error” in Encyc Biostat  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 



Notation 

• 𝜃𝜃𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑎𝑎𝑎𝑎 𝑌𝑌 = expectation of 𝑌𝑌 for treatment 
𝐴𝐴 = 𝑎𝑎, biomarker status 𝐵𝐵 = 𝑏𝑏 𝐴𝐴,𝐵𝐵 = 0,1 . 
– objective response (0,1), event-free survival time 

•  𝜃𝜃𝑎𝑎𝑡𝑡∗ = 𝐸𝐸𝑎𝑎𝑡𝑡 𝑌𝑌 = expectation of 𝑌𝑌 for treatment 
𝐴𝐴 = 𝑎𝑎, biomarker test result 𝑇𝑇 = 𝑡𝑡 𝐴𝐴,𝑇𝑇 = 0,1  

𝜃𝜃𝑎𝑎𝑎𝑎∗ = Σ𝑏𝑏=01 𝜃𝜃𝑎𝑎𝑎𝑎Pr 𝐵𝐵 = 𝑏𝑏|𝑇𝑇 = 𝑡𝑡  

       = 𝜃𝜃𝑎𝑎0 1 − 𝑝𝑝𝑡𝑡 + 𝜃𝜃𝑎𝑎1𝑝𝑝𝑡𝑡 , 

    𝑝𝑝𝑡𝑡 = Pr 𝐵𝐵 = 1|𝑇𝑇 = 𝑡𝑡  
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Notation 

• 𝛿𝛿𝑏𝑏 = 𝜃𝜃1𝑏𝑏 − 𝜃𝜃0𝑏𝑏 = treatment effect (mean 
difference) between treatment arms 𝑎𝑎 = 0,1 
given biomarker status 𝐵𝐵 = 𝑏𝑏 = 0,1  

• ∆𝐴𝐴.𝐵𝐵= 𝛿𝛿1 − 𝛿𝛿0 = predictive biomarker capacity. 

 
• 𝛿𝛿𝑡𝑡∗ = 𝜃𝜃1𝑡𝑡∗ − 𝜃𝜃0𝑡𝑡∗ = treatment effect (mean 

difference) between treatment arms 𝑎𝑎 = 0,1 
given test result 𝑇𝑇 = 𝑡𝑡 = 0,1  
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Biomarker Stratified Design 
𝛿𝛿𝑡𝑡∗ =  𝜃𝜃1𝑡𝑡∗ − 𝜃𝜃0𝑡𝑡∗  
𝛿𝛿𝑏𝑏 = 𝜃𝜃1𝑏𝑏 − 𝜃𝜃0𝑏𝑏 

∆𝐴𝐴.𝑇𝑇
∗ = 𝛿𝛿1∗ − 𝛿𝛿0∗ 

= 𝑝𝑝1 − 𝑝𝑝0 𝛿𝛿1 − 𝛿𝛿0  

= 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁 − 1 ∆𝐴𝐴.𝐵𝐵 , 
= treatment arm by biomarker interaction  
∆𝐴𝐴.𝐵𝐵 attenuated by the factor 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁 − 1. 
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NDME Attenuation Result 

• That is,  

 

 

• The difference in log hazard ratio between 
groups defined by test T is attenuated relative 
to the corresponding difference for test S†. 
 

34 

(log | 0) (log | 1)E h T E h T= − =

[ ] ( )(log | 0) (log | 1) 1E h S E h S NPV PPV= = − = × + −

†Provided PPV ≥ 1 – NPV , i.e., T  not negatively informative for S, so that  
0 ≤ PPV + NPV – 1 ≤ 1. (Pennello, Clin Trials 2013 Oct;10(5): 666-76 ) 

𝛿𝛿0. − 𝛿𝛿1. = (𝛿𝛿.0 − 𝛿𝛿.1 )(𝜋𝜋1 − 𝜋𝜋0) 



Cox Proportional Hazards Model 
• For treatments X = 0, 1, Cox hazard for S, X is 
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0( | , ) ( ) S Xy S X y eβλ λ=
log hazard ratio for s S sβ = =

{ }0( | , ) ( | , , ) | , ,y T X E y T S X T X Y yλ λ= ≥

{ }( | , ) | , ,E y S X T X Y yλ= ≥

{ }0 ( ) | ,S Xy E e T Xβλ≅

( )0 01
0 ( ) X XX

Ty e e eβ ββλ π = + − 

NDME 

Rare Event 



Cox Proportional Hazards Model 

• Same approximate attenuation holds for log hazard 
ratio difference.  

• Approximation is OK for rare enough outcome. More 
investigation is needed.  
 

36 

( )0 01
0( | , ) ( ) X XX

Ty T X y e e eβ ββλ λ π ≅ + − 

( | 1, 1) ( | 0, 1)y T X y T Xλ λ= = − = =

( )( )01
0 1 0( )y e eββλ π π= − −

[ ]( )1 0( | 1, 1) ( | 0, 1)λ λ π π= = = − = = −y S X y S X

Pepe MS, Self SG, Prentice, RL. Statist Med 1989;, 8, 1167-1178.  
Prentice RL. Biometrika 1982; 69, 331-342.  
Lin DY, Psaty BM, Kronmal RA. Biometrics 1998; 54(3): 948-963. 
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Missing Data in Biomarker 
Evaluation Studies 



Diagnostic Test Evaluation 
• Y = Reference Standard Result 

 for a present or future state of health 
–presence or absence of disease 
– time to onset of disease, progression, death, etc. 
– true level of measurand in a sample 

• X = Test Result 
– Quantitative (concentration of analyte)  
– Continuous (e.g., ratio)  
– Semi-Quantitative (ordinal)  
– Qualitative (binary) 

• Z = Covariates (including comparator tests) 
39 



Missing Data in Diagnostic Studies 
• Missing Reference Y. (verification bias)   

– State of health was not verified by the reference. 

• Missing Test Result X. (unsatisfactory test bias) 
– Sample is unavailable or unevaluable. 
– Test result was invalid. 
– Lack of consent to use sample. 

• Imperfect Reference Y. (misclassification bias) 
– Y is subject to error 

• Imprecision in X or Y. (measurement error bias) 
– Result varies over repeated measurement 
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Test Result MAR 

• Test result X missingness indicator M = 0,1. 
• If X is MAR, then 

41 

Se, Sp unbiased in complete data. 
Get PPV, NPV by Bayes Theorem or IPW (if Y = 

0,1 sampling fractions are known). 
MAR underlies validity of case-control studies. 
 

=i.e., | , , | ,    (MAR)X M Y Z X Y Z
=| , , | ,M X Y Z M Y Z



Reference Result MAR 

• Reference Y missingness indicator V = 0,1. 
• If Y is MAR, then 

 

42 

PPV, NPV are unbiased among complete data. 
Get Se, Sp by Bayes Theorem or IPW (provided 

sampling fractions for X = 0,1 are known. 
 

=i.e., | , , | ,    (MAR)Y V X Z Y X Z
=| , , | ,V X Y Z V X Z



Intention to Treat (ITT) 
• Includes every subject who is randomized 

according to their treatment assignment, 
regardless of non-compliance with treatment, 
missing outcomes, protocol deviations, 
withdrawal, or anything else that happened after 
randomization.  

• The ITT analysis avoids overoptimistic estimates of 
treatment efficacy due to the exclusion of subjects 
on the basis of post-randomization variables. 

43 
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Intention to Diagnose (ITD) 
• Include every subject, regardless of whether 

the subject is  
– missing the test result,  
– the clinical reference result, or 
– comparator test results. 

• When appropriate (meaningful for analysis), 
impute missing data when evaluating the test 
for diagnostic performance. 
 

44 

Bu Y, Zhou XH. J Biopharm Stat. 2016, 26 (6), 1118–1124  
Denne JS, Pennello G, Zhao L, Chang SC, Althouse S. Stat Biopharm Res. 2014;6 (1), 78–88. 
Li, M. J. Biopharm Stat. 2015, 25 (3), 397–407. 
Lunceford, J.K. Pharm Stat. 2015, 14 (3), 233–241. 



Intention to Diagnose (ITD) 
• Missing Test Results  

– If subject is retested, include retest result (if 
retesting is consistent with intended use). 

– Report number and proportion of subjects without 
the test result by the reason it is missing (lack of 
consent, sample un-available, sample unevaluable, 
test result invalid) 

– If proportion of subjects with an invalid test result 
is large, the test may have a design problem. 

– Impute missing test results, if appropriate. 

45 

Begg, Greenes, Iglewicz. The influence of uninterpretability on the 
assessment of diagnostic tests. J Chron Dis 1986; 39(8): 575-584. 



Missing Y 

Bayesian MNAR Model 

46 



Data 

•47 

Test Result 
Reference 
Diagnosis T = 0 T=1 

D = 0 x00 x01 

NA w•0 w•1 
D = 1 x10 x11 



Bayesian MNAR Model 

 
 
 
 

• Prior 

• 7 parameters, 5 dofs in data 
 

•48 

Pr( 1)τ = =T
Pr( 1| ),  0,1= = = =tp D T t t
Pr( 1| , ),  , 0,1ρ = = = = =dt V D d T t d t

, , ~ ( , )τ ρ α βt dtp Beta

Pennello (2011). Bayesian Analysis of Diagnostic Test Accuracy When 
Disease State is Unverified for Some Subjects, J Biopharm Stat, 21: 954-970. 
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Missing Disease Verification Models 

• Full MNAR model 
– Probability of verification depends on missing 

disease state, test result (parameters under-
identified). 

• Reduced MNAR model 
– Probability of verification depends on missing 

disease state, not test result (identified). 
• MAR model  

– Probability of verification depends on test result, 
not missing disease state (identified) 

ρ ρ≡dt d

ρ ρ≡dt t

ρdt



MNAR Bayesian Models 
• In some MNAR models, parameters are well-

defined, but not fully identified. 
• In some instances Bayesian MNAR models can 

still obtain useful inferences. 
– Neath, A., Samaniego, F. On the efficacy of Bayesian 

inference for non-identifiable models. American 
Statistician 1997; 51: 225-232. 

– Gustafson, P. Measurement Error and Misclassification 
in Statistics and Epidemiology: Impacts and Bayesian 
Adjustments, Chapman & Hall / CRC, 2003. 

– Gustafson, P.  Bayesian Inference for Partially 
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Data Distributions 
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Hepatic Scintigraphy 

 
Scintigraphy 

Liver Disease 
D=0  D=1 NA 

T = 0 54 27 140 
T = 1 32 231 166 
Total 86 258 306 

Drum D.E., Christacopoulos, J.S. (1969). Hepatic scintigraphy in clinical 
decision making, J. Nucl. Med., 13, 908-915.  •53 
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Posterior Distributions 
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Se/Sp Posterior Distribution 

 

•55 Solid Line is the test ignorance region. 



Test Ignorance Region 
TIR delineates the possible estimates of Se, Sp over 
all possible disease states of unverified subjects: 
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Se/Sp Posterior Distribution 

 

•57 Solid Line is the test ignorance region. 
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Hepatic Scintigraphy,  
1/7th of Missing Data 

 
Scintigraphy 

Liver Disease 
D=0  D=1 NA 

T = 0 54 27 20 
T = 1 32 231 24 
Total 86 258 44 

Drum D.E., Christacopoulos, J.S. (1969). Hepatic scintigraphy in clinical 
decision making, J. Nucl. Med., 13, 908-915.  •58 
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Posterior Distributions 
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Se/Sp Posterior Distribution, 1/7th Miss 

 

•60 Solid Line is the test ignorance region. 



Concluding Remarks 

• A biomarker’s capacity to predict treatment 
response or treatment effect is only as good as 
the test used to measure it. 

• In biomarker subgroup analysis, a priori biological 
understanding may determine 
– clinical objectives of validation study,  
– statistical analysis plan. 

• Biomarker signature (classifier) development and 
validation has been a challenge  
– No FDA approvals to date.    
– Analytical validation can be very complex. 
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Concluding Remarks 

• Subgroup multiplicity can be out-of-control for 
some diagnostic devices. 
– Smoothing, not hypothesis testing may be best 

option for data interpretation, labeling. 
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B-type Natriuretic Peptide (BNP) 
• Demographics 

– age, sex, race, ethnicity, height, weight, BMI  
• Physical Exam, Signs and Symptoms  

– vital signs, acute dyspnea (due to cardiac vs non-cardiac cause), 
chest discomfort, pulmonary rales, peripheral edema, nocturnal 
cough, etc.  

• Medical History, Risk Factors and Comorbidities 
– diabetes, kidney disease / renal dysfunction (eGFR<60), 

hypertension, history of MI, cardiac ischemia, prior diagnosis of 
HF, atrial fibrillation, myocarditis, tachycardia, LV hypertrophy, 
pulmonary embolism, COPD, pneumonia, asthma, obstructive 
sleep apnea, sepsis, anemia, cirrhosis of liver, obesity [BMI ≥ 
30], severe obesity [BMI ≥ 37.5], etc.  

• Medication list  
– beta-blockers, diuretics, ACE inhibitors, angiotensin II receptor 

blockers [ARBs], aldosterone antagonists, statins, etc.  
• Prior to admission to ED  
• ED medications (includes date and time of administration)  
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Presenter
Presentation Notes
The following is an example of the data that should be collected in case report forms



B-type Natriuretic Peptide (BNP) 
• Diagnostic Procedure Results (if available per standard of 

care in the assessment of the dyspnea patient) 
– ECG, Echocardiogram, Radionuclide angiography , Chest 

radiography  
• Ejection fraction (EF)  
• Laboratory Results 

– electrolytes, BUN, creatinine, eGFR, thyroid function tests, liver 
function tests, HbA1c or fasting glucose, CBC, urinalysis, 
troponin  

• Standard-of-care BNP or NT-proBNP value at admission 
• Diagnosis: heart failure vs no heart failure 
• Classification of HF if present and known:  

– HFrEF (heart failure with reduced ejection fraction) (≤ 40% EF)  
– HFpEF (heart failure with preserved ejection fraction) (> 40% EF)  

• Severity of HF if present: NYHA Functional Class (I, II, III, IV)  
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Graph Theory 
Corollary 5.3.2. Let A, B, and C denote sets that partition of 
factors in a graphical model such that every chain between a 
factor in A and a factor in B involves at least one factor in C; 
then the relationships among the factors in A and C can be 
examined in the marginal table obtained by summing over the 
factors in B. 
Example 5.3.3. Model [123][24][456] is graphed below: 

 
 
 
 

 
 

• Accurate conclusions can be drawn from the marginal 
tables n123···, n1234··, n···456, and n·2·456. 65 



Concluding Remarks 
• Benefit-Risk Evaluation of Diagnostic Devices 

– Validation  
• Baker, S. G. (2009). Putting risk into perspective: Relative utility curves. JNCI, 

101:1538–1542 
• Baker, S. G., Van Calster, B., Steyerberg, E. W. (2012). Evaluating a new marker for risk 

prediction using the test tradeoff: An update. Int J Biostat 8(1):Article 5, 101:1538–
1542. 

• Evans SR, Pennello G, Pantoja-Galicia N, et al, for the Antibacterial Resistance 
Leadership Group. Benefit-risk Evaluation for Diagnostics: A Framework (BED-FRAME). 
Clin Infect Dis 2016; 63(6):812-7. 

• Pennello G, Pantoja-Galicia N, Evans S. Comparing diagnostic tests on benefit-risk. J 
Biopharm Stat 2016; 26(6): 1083–1097. 

• Pepe MS, Janes H, Li Cl, Bossuyt PM, Feng Z, Hilden J. Early-phase studies of 
biomarkers: What target sensitivity and specificity values might confer clinical utlity? 
Clin Chem 2016;62(5):737-742.  

• Vickers, A. J., Elkin, E. B. (2006). Decision curve analysis: A novel method for evaluating 
prediction models. Med Decis Making 26:565–574. 

– Signature Development 
• Gunter L, Zhu J, Murphy SA. Variable selection for qualitative interactions. Statistical 

Methodology 8 (2011) 42–55. 
• Schnell PM, Tang Q, Offen WW, Carlin BP. A Bayesian Credible Subgroups Approach to 

Identifying Patient Subgroups with Positive Treatment Effects. Biometrics 2016; 72, 
1026–1036. 
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Take Home Messages 

• Analytical Performance 
– Characterizing the analytical performance of a 

diagnostic device (its reliability in measuring the 
analyte) is a prerequisite to applying it to specimens 
in a clinical performance study. 

• Clinical Performance  
– Clinical significance should be demonstrated. 
– Intended Use determines clinical data requirements.  
– Claims in labeling depend on studies conducted.  
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Take Home Messages 

• Biomarker Signature Discovery / Development 
– Classifier development, validation been challenging 
– CDRH has a pre-submission program to meet with & 

provide informal feedback to device sponsors. 
• Independent validation  

– Validate a biomarker assay on specimens independent 
of those used to develop the assay. 

• “Intent to Diagnose” Analysis 
– An analysis of device performance should include  all 

study subjects, even if the device result or the 
reference (gold) standard result is missing 
(unavailable, unevaluable, invalid, indeterminate). 
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