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Random variable network

Random variable network is a pair (X, ~):
e X =(Xi,...,Xy)—random vector
@ y—measure of pairwise dependence.

Gaussian graphical network - particular case of random variable network

e X =(Xi,...,Xn)—random vector with multivariate normal
distribution N(u,X).
_ part i —giid
° Y= ’Y/)J =p - /i gl
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Network model

Any random variable network generate network model.
e Complete weighted graph G = (V, E,~).
@ Nodes of the network model has been identified with random
variables X;,i =1,..., N.
@ Weights of edges in the network model are given by measure
Vij = V(X Xj).
@ Gaussian graphical network generate gaussian graphical model.
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Network structures

Network structures - subgraphs of the network model.
G =(V,E):VVCV,E'CE
@ Concentration graph - popular network structures for gaussian
graphical model.

e Concentration graph - edge (/,;) is included in the concentration
graph if random variables X; and X; are conditionally dependent.
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References

Gene-expression network.
Lauritzen(1996), Drton & Perlman(2007)

Thousands of publications.

°
@ Numerical algorithms. Only FWER under control.
°

No results for finite sample size.
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Problem statement. Multiple decision approach

(X,~) - Gaussian graphical network.

G = (V, E,~) - Gaussian graphical model.

G' =(V,E'): E' C E - concentration graph.

Let S = (s;;) - adjacency matrix of concentartion graph, S € G - set
of all adjacency matrices.

Let Hs : 6 € Qs-hypothesis that concentration graph has adjacency
matrix 5,5 € G.

@ There are observation x(t) = (x1(t),...,xn(t)),t=1,...,n

Problem: construct optimal statistical procedure /(x) to identify
concentration graph from observations i.e. to select one from
disjoint hypotheses Hs.
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Statistical procedures. Risk function.

o Statistical procedure d(x) = { do, x € Dq ; Ugeg Do =X

@ 0(x) = dg - decision, that concentration graph has adjacency matrix

Q,Qegd.

e w(Hs;dg) = w(S, Q) - loss from the decision dg when the
hypothesis Hs is true, w(S5,5) =0,S € G.

@ Risk function of statistical procedure d(x) is defined by

Risk(S,0;0) = Y w(S,Q)Py(5(x) =dg), 0€Qs,5€G
Qeg

Py(6(x) = dg) - the probability that decision dg is taken while the
true decision is ds.
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Optimal statistical procedure.

o Definition: Statistical procedure § is optimal in class D if
R(S,0,6) < R(S,0,8"),VS,V0 € Qs,Vd' € D.

@ Restrict attention to W-unbiased statistical procedures
Egw(0,6) < Egw(0',0),V0,60' € Q

R(S,0,5) < R(S',0,5),¥S,5,0 € Qs
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Multiple hypotheses testing approach. Individual

hypotheses

Individual hypotheses
h,-J:p"J:Ovs k;J:piJ#O

According to Lauritzen S.L.!

. —ghi
P = ——
O"ylo'./a./
Then
h,',jZO'”J:OVSk,'JZO"*I#O

!Lauritzen S.L.(1996) Graphical model. Oxford university press.

Petr Koldanov (NRU HSE) Optimal statistical decision for Gaussian grapl




Multiple statistical procedure

Let ¢; j(x) tests of individual hypotheses.

Define
0, (pl,g e gOLN
d(x) = v12 0, S P2 N
oin 2N - O

Define §(x) = dg if #(x) = G
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Existing statistical procedures. Single step procedure.’

Test of individual edge inclusion is

P5t(x) = { L |22 > ¢

Y 07 |ZU‘ S Cij

_ gl . .
1—r7 sﬁsﬁ—sample partial correlation,

where z7 = 11n (H"-J-), ri =
sl-elements of matrix S71. ¢j from 2 P ;_o(|27| > ¢j) = o
; St — (.55t
Then construct matrix ®>*(x) = (p7*(x))
Properties of the associated multiple decision standard statistical

procedure 6°t = dg if ®>f(x) = G were not investigated.

2Anderson T.W.(2003) An introduction to multivariate statistical analysis.3-d
edition. Wiley-Interscience, New York
3Edwards, D.M.(2000) Introduction to Graphical Modeling. New York, Springer.
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Stepdown procedure.*

Let p, are p-values of tests gpgt(x) k=1,..., W Order
P(1) < P(2) <...< P(M-1) < P(Mm) and let h(1)7 h(2), ceey h(M) be the
corresponding hypotheses.

@ Step 1: If p;) > #; then the decision is : accept all hypotheses hy;),
i=1,2,..., M and stop, else reject hypothesis h(1) and go to the
step 2.

@ Step 2: If pp) > 7= then the decision is : accept all hypotheses
hiy, i =2,..., M and stop, else reject hypothesis h) and go to the
step 3.

° ...

o Step M: If |py| > « then the decision is: accept hypothesis h(yy) else
reject all hypotheses.

Properties - control of FWER.

Type Il error are not under control.
*M. Drton, M.D. Perlman.(2007) Multiple testing and error control in Gaussian
graphical model selection. Statistical Science, 22,3, 430-449.
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Our approach. Additive loss function

I} ;-loss from false inclusion of edge (i, )
Ii";~loss from false non inclusion of the edge (i,j) i,j =1,2,...,N; i #j.
Loss function w(S, Q) is additive® if:

EE D DU IR SR o

(ij):si,j=0,q; ;=1 (i4):sij=1,q; /=0

Theorem 1° Let the loss function w be additive and I{’j =/, I,’”J = /",
P4 i j=1,2,...,N. Then

Risk(S,0;8) =Y r(sij, ¢ij) = I'Es[Yi(S, 0)] + I"Eg[Yu(S,0)], 6€Qs
i
where Y;(S,0), Yi(S,d) are the numbers of Type | and Type Il errors by §

E.L.Lehmann (1957) A theory of some multiple decision problems.|
Ann.Math.Stat.,28,1-25, 547-572.

5V.A. Kalyagin, A.P. Koldanov,P.A. Koldanov, P.M. Pardalos. Optimal statistical
decision for Gaussian graphical model selection.arXiv:1701.02071v1
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UMPU test for individual hypotheses

Theorem 27 Optimal in the class of unbiased statistical level o test for

individual hypothesis hj; : p'J =0 against kij :

0,

L,

where det(sy) =

P #£ 0 s:
|35u é’l beta
7o <1-2c;
V %
|asjj— 2| beta (2)
>1-2¢]

\/g—I—ac

—as,% + bsjj + ¢, cbeta is the a-quantile of Beta

distribution. (a = a({sk}), b= b({sk}),c = c({su)})-

"Koldanov P., Koldanov A. P., Kalyagin V. A., Pardalos P. M. Uniformly most
powerful unbiased test for conditional independence in Gaussian graphical model //
Statistics & Probability Letters, 2017, Vol. 122, P. 90-95.

Petr Koldanov

(NRU HSE)
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Sketch of proof. Wishart distribution

511 512 ... SIN
S S ... S

S — 21 22 2N (3)
SN1 SN2 .- SNN

F({5}) = [det(o*)]"/? x [det(si)] "N "D/2 x exp[—(1/2) 32, 3= sk0™]
KT N2y % e NIN-1)/4 5 T (n/2)T((n — 1)/2) - T((n— N + 1)/2)

if the matrix (sy/) is positive definite, and f({sk}) = 0 otherwise. Let / be

the interval of positive definiteness of the matrix. One has for a fixed i < j:

L1
f{su}) = CUo"Y) xexpl=oTsy =5 > o] x h{su})
(kD) (kDA
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Sketch of proof. UMPU test

UMPU test for testing hypothesis
h;j:p"ljzovsk,-j:p"*j;éo
has the Neyman structure and can be written as

0y ifa({su}) < sp < a({su}), (k1) # (i,))
5i,j({5kl}) B { 8,.;.1, if Sij < Cl({Sk/}) Sij > CQ({Sk/}), (k, /) ;é (i,j)

where constants are defined from (4)
Jintae exp[—ag si[det(sk)](""N=2/2ds;; =1—q;; (5)
f/ EXP[_UgSij][det(sk,)](n—N—2)/2d5’_j i
/,m[oo;q] Sij eXp[—ags,-j][det(sk,)]("*’V*2)/2dSij+
T Sij eXP[*O’gS,'j][det(sk,)](”—N—Z)/2dsij _ (6)

IN[c2;+00] .
= qQjj fl Sij exp[—ags,-j][det(sk/)](””v’z)/zds,-j,
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Sketch of proof. UMPU test.

Under aé’j = 0 equation (5) is

fm[cl;cz] [det(sk/)] (n=N=-2)/2 dsij

=1—oj 7
i dex(sa)|-N-72ds, i )
Let K = 2=N=2 x — sij. Then
d—xq
ffd(ax2 — bx — ¢)fdx = (=1)KaK (> — x )KL [20 uf(1 — u)Kdu
X2—X1
Equation (7) can be written as
©Q—x1 1
o—x MK+ 1)r(K+1)
271 K K K K
1—u)fdu = (1—- 1-u)Kdu = (1-
Crnu( u)du = ( a)/ou( u)"du = (1—a) 2K +2)
x2—x1
L (8)
Acceptance region is: cgefa < )’ij;l <1- cgefa or
i i—b/2
2C£eta_1< as; j—b/ <1_2C£eta

— \/b?/4+ac —
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UMPU test is equivalent to partial correlation test

Sample partial correlation test for testing hypothesis p'J = 0:

[0 MY <qy
P { L, |r] > qy 9)

where ¢; j is (1 — a/2)-quantile of the distribution with density function

1 T(n—N+1)/2)
v T((n—N)/2)

Theorem 3 Sample partial correlation test (9) is equivalent to UMPU test
(2) for testing hypothesis p'Y =0 vs p'J # 0.

f(x) = (1—x?)=N=2/2" 1<x<1 (10
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Equivalence of partial correlation and UMPU tests. Sketch

of proof.

It is sufficient to prove that

Si’j as,-J— g

Let A= (ax/) be an (N x N) symmetric matrix. Fix i < j,
i,j=1,2,...,N. Denote by A(x) the matrix obtained from A by
replacing the elements a;; and a;; by x. Denote by A™Y(x) the cofactor of
the element (i, /) in the matrix A(x). Then the following statement is true
Lemma 1 One has [detA(x)]’ = —2A7Y(x).
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Equivalence of partial correlation and UMPU tests. Sketch

of proof.

det(S(x)) = —ax® + bx + ¢ — [det S(x)] = —2ax + b = —25"Y(x)

i.e. S™(x) = ax— b/2.

b -
X:S,',J'—>aS,',J'—§:5"J
It is sufficient to prove that v/SHSij = /B 4 ac.

Let xp = bEvb tdac ”2’?“4“ be the maximum root of equation ax?> — bx — ¢ = 0.

2
Then ax2—§ \/%+ac.
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Equivalence of partial correlation and UMPU tests. Sketch

of proof.

Consider g ( )
- —Shi(x
r'(x) = ———=

N
According to Silvester determinant identity:

S} det S(x) = S — [S7(x)]?
Therefore for x = x; and x = x> one has
SHiSH —[SH(x)]? =0

For x = x; and x = xp one has rJ(x) = £1. The equation
SH(x) = ax — g implies that when x is increasing from x; to xp then

r'J(x) is decreasing from 1 to —1. That is r'd(x) = —1, i.e.

axp — g = \/5HiSiJ. Therefore

2
VSiisii = [ 4+ ac
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Multiple decision statistical procedure

R {1

op op

q)opt(x) _ ¥21 (x), 0, sy Pop (x) ) (12)
(), e (x), s 0

Define multiple statistical procedure for concentration graph identification

§P(x) = dg, iff ®P(x) = G (13)
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Multiple decision statistical procedure

Theorem 48 Let the loss function w be additive and

Il/
Oé,"j // I//’ I#J? 1) 1727--'7P- (14)
u

Then the procedure §°Pt is optimal multiple decision statistical procedure
for Gaussian graphical model selection in the class of w-unbiased
procedures.

Note: statistical procedure §(x) = dg iff ®(x) = G and ¢(x) is defined by
(9) with constant from (10) is optimal multiple decision statistical
procedure for Gaussian graphical model selection in the class of
w-unbiased procedures for additive loss function.

8V.A. Kalyagin, A.P. Koldanov,P.A. Koldanov, P.M. Pardalos. Optimal statistical
decision for Gaussian graphical model selection.arXiv:1701.02071v1
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Experimental result

Consider two multiple decision Bonferroni type statistical procedures for
concentration graph identification. First procedure - standard procedure.
Second procedure based on the UMPU individual tests.

Probability of at least one error of type A Probability of at least one error of type A
] N= 7 N=
(10} @
S 40 p 40
o iy o iy
§ . < . <
alpha= alpha=
3 0,5 £ 3 og
L o =
2T T T T T T T T T T T T
40 60 80 100 120 140 40 60 80 100 120 140
Number of observations Number of observations

Figure: FWER as function from n. N=40. Left: significance level & = 0.1. Right:
significance level o = 0.3 Solid line - procedure §°* (standard). Dashed line -
procedure §°P* (optimal). Horizontal line - number of observations n.
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Conclusions

o UMPU Neyman structure test for testing hypothesis
h'J : p"™ =0 vs k; j: p'Y # 0 is constructed.

@ Standard test based on sample partial correlation with threshold from
exact distribution is UMPU.

@ Multiple decision statistical procedure based on UMPU individual
tests is optimal unbiased procedure under additive loss function.
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THANK YOU FOR YOUR ATTENTION!
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