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Starting point : the p=filter algorithm from
“Multilayer FDR control for grouped hypotheses'.

o Input: N p-values (one per hypothesis)
M arbrtrary partitions of these hypotheses
M target FDR levels

o Qutput: A set of rejected hypotheses and groups
that are “internally consistent”
such that group FDR Is simultaneously
controlled for all partitions.

» Special cases: Benjamini-Hochberg procedure
Simes test for the global null
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True signals

10,000 hypotheses in al00 x 100 grid.

White (nulls) ~ N (O, |)
Black (non-nulls) ~ N(m, |) for some m > 0
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Target FDR = 0.2
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p-filter

Target FDR = 0.2
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p-filter

Target FDR = 0.2 3 partitions (rows, columns, entries)
Fach target FDR = 0.2.
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Several past works have looked at incorporating
various forms of prior knowledge to improve
power and precision of multiple testing methods.

» Prior weights (likelihood of being non-null)

» Penalty weights (differing importances)

» Null-proportion adaptivity under independence
» (Guarding against arbitrary dependence

» (Group structure (possibly several partrtions)

We Integrate all of the above In one framework.

(essentially “p-filter on steroids”)
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Prior-welghted BH controls FDR
under Independence and positive dependence.
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Penalty-welghted BH controls weighted-FDR under
iIndependence and positive dependence.

Uy = sum of penalty weights of smallest k& p-values.
i Z uzl(z - R)_
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Prior+penalty-weighted BH controls weighted-FDR
under Independence and positive dependence.
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U(ry = sum of penalty weights of smallest £ p-values.

Blanchard-Roquain ‘08



Null-proportion adaptivity for BH
controls FDR only under independence.
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for
Prior+penalty-weighted BH controls
welghted-FDR only under independence.




Reshaped BH controls FDR
under arprtrary dependence.
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prior+penalty-weighted BH controls
welghted-FDR under arbitrary dependence.
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LEMMA 1 (Super-uniformity lemma). Let f : |0,1]" — [0,00) be arbi-
trary, and let index i € HY refer to some null hypothesis.

(a) If f is nonincreasing, has range |0,1], and satisfies the LOOP condi-
tion (3.6), then under independence and uniformity, we have
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The prior-welghted Simes test
controls type- | error for the global null
under arbitrary dependence.

. - Quyn
Simes(P) :=  min é(>k’)

We test if Simes(P) < «, which happens iff kg > 1.

The Simes p-value really 1s a p-value for the global null.
[t 1s uniformly distributed it P is entirely null.
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Suppose we want to control the
penalty-welighted group-FDR for a single partition :

. : (1)
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Solution : Calculate Simes p-value of each group,
and then run BH on the Simes p-values.



When we have multiple partitions, we would
ike to have "Internally consistent” rejections,
(also known as consonance+tcoherence) :
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When we have multiple partitions, we would
ike to have "Internally consistent” rejections,
(also known as consonance+tcoherence) :

For every partition,

» Fach rejected group should contain
at least one rejected element.

o Fach rejected element should be
contained In some rejected group.
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Fo: let's see what happens It we have two partitions,
the finest one (each element Is a group), and a coarser one,
we want to control elementwise FDR and group FDR :
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Fo: let's see what happens It we have two partitions,
the finest one (each element Is a group), and a coarser one,
we want to control elementwise FDR and group FDR :

Simes
p—-value
Group1 0.03 ©0.01 0.18 ©0.04 0.08 0.05
Qindiv = 0.1
Qlgroup = (.2 Group2 ©0.05 ©0.11 ©0.06 ©0.01 089  0.05

Group3 0.14 0.12 0.58 0.11 0.11 0.18

Group4 0.88 0.24 0.09 066 0.45 0.45
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Running BH=+SIimes on each partition separately
might lead to “contradictory” findings.
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Running BH+5Imes on each partition separately
might lead to “contradictory” findings.

Simes
p—valle
Group 1]/0.03 0.01 0.18 0.04 0.08 0.05
Qindiv = 0.1
Veroun = Vol Group 2|/0.05| ©0.11 [0.06| (0.01| 0.89 | 0.05

Group 3| 0.14 0.12 058 0.11 0.11 0.18

Group4 0.88 0.24 |0.09| 0.66 10.45 0.45
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Naively intersecting the two sets of findings
may control neither elementwise nor group FDR.
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Naively intersecting the two sets of findings
may control neither elementwise nor group FDR.

Simes
p—-value
Group 1|{0.03| |0.01| 0.18 |0.04| (0.08/| 0.05
Qindiv = 0.1
Qlgroup = (.2 Group 2| |0.05| 0.11 |0.06/ |0.01| 0.89 | 0.05
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Our unifying framework can handle

many arbrtrary, Incomplete partrtions,

consisting of possibly-overlapping groups

with group-level prior+penalty weights, along with
oroup-level adaptivity™ or reshaping™*.

(1) (1) LD (D)

Uy "Wy n{ Wnq weights ... weights ...
< Pl 9 o o oy Pnl P 9 o oo 7.Pn1_|_..._|_rn,G_1_|_]_, I Pn_€2
: 2 2 e
Group 1, weights Ug ),w§ ) Group G, weights ug),wg)

Using the p-filter algorithm results in

- an internally consistent set of rejections,

- simultaneously controls weighted FDR for all partitions,

- under Independence™, positive or arbitrary** dependence.



Algorithm 1 The p-filter for multi-layer FDR control

Input: A vector of p-values P € [0, 1]™;

M possibly incomplete partitions of possibly overlapping groups;

M target FDR levels a1, ..., an;

M sets of prior weights and/or penalty weights, one pair of weights for each
group in each partition;

M thresholds for adaptive null proportion estimation Ai,..., Ans.
Initialize: Set k., = G.,, and 7., as in definition (7.2).
repeat

form=1,...,M do R
Update the mth vector: defining S,,(k) as in equation (7.4), let

(7.8)  km + max{ k., € [0,Gm] : > ul™ > ki,
gégm(kl7'-°7km—17k;n7km—|—l7°°°akM)
end for
until the vectors k1, ..., kym are all unchanged for one full cycle.

Output: Adaptive vectors k1 = k1,...,kn = k.
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Algorithm 1 The p-filter for multi-layer FDR control

Input: A vector of p-values P € [0, 1]™;
M possibly incomplete partitions of possibly overlapping groups;
M target FDR levels aq, ..., an;

M sets of prior weights and/or penalty weights, one pair of weights for each
group in each partition;

M thresholds for adaptive null proportion estimation Ai,..., Axs.
Initialize: Set k., = G.,, and 7., as in definition (7.2).
repeat

form=1,..., M do A
Update the mth vector: defining S,,, (k) as in equation (7.4), let

(7.8)  km + max{ k., € [0,Gm] : > ul™ > ki,
gégm(kl ..... km—lakm km—l—l ..... kM)
end for
until the vectors k1, ..., kym are all unchanged for one full cycle.

Output: Adaptive vectors k1 = k1,...,kn = k.

Theorem : [he algorithm returns a set of rejected hypotheses and groups
that are internally consistent, and weighted group FDR is simultaneously controlled fo
all partitions, under independence, positive dependence or arbitrary dependence.
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