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Post hoc inference Introduction

Genome-Wide Association Studies

Typical analysis steps

@ define a list of candidates using a multiple testing procedure
@ refine this list based on prior knowledge (genome regions)

Limitations

@ Initial selection does not take advantage of available prior knowledge
@ No formal risk assessment can be made on the resulting candidate sets
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T
Other motivating examples

Cancer studies Neuroimaging

Differential gene expression analyses  Activation of brain regions

Typical analysis steps

@ define a list of candidates using a multiple testing procedure

@ refine this list based on prior knowledge (gene pathways, brain regions)

Limitations

@ Initial selection does not take advantage of available prior knowledge
@ No formal risk assessment can be made on the resulting candidate sets
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Post hoc inference [IMOINEEHIV

Multiple testing: notations

e H ={1,...m} m null hypotheses to be tested
@ Ho C H: true null hypotheses, H1 = H \ Ho

o (p,')]_g,'gmi p—values

Multiple testing procedures
Aim at building from the data a set R of rejected hypotheses satisfying a

statistical guarantee, e.g. controlling:

o (k-)Family-Wise Error Rate: k-FWER = P(|R N Ho| > k — 1)
o False Discovery Rate: FDR = E ('f,;]’v*{")

Most procedures used in applications are thresholding procedures:

R={icH,p <t}
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Post hoc inference

Goal: Confidence statements for the number of true/false positives on any
number of arbitrary rejection sets, possibly selected after data analysis

Formal objective

Find V,, S, such that VR C {1...m},

v

P(IRNHo| > Va(R))
P(|R N H1| < Sa(R)) >

11—«
1

o
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Post hoc inference [IMOINEEHIV

Post hoc inference in a nutshell

Classical multiple testing Post hoc inference
6w e o w o w w0 w0 @
FDR < 25% With probability > 75%

IRNHi| >2and |[R'NH1| >1

Pierre Neuvial (IMT) Post hoc inference via multiple testing MCP 2017, UC Riverside 7/ 22



Objective
State of the art: Goeman and Solari (2011)

Existing post hoc procedures! are based on closed testing?

@ Require testing all 2™ — 1 possible intersections between the m original
hypotheses!

@ Not feasible for m > 20 or 30.

In practice: “shortcuts”

e computationally efficient procedures (complexity ~ mlog(m))
@ increased conservativeness and/or narrower applicability:

@ Simes’ shortcut: valid under positive dependence between hypotheses
(PRDS)

'Multiple testing for exploratory research. Stat. Science (2011)
*Marcus, Peritz and Gabriel, Biometrika (1976).
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Joint Family-Wise Error Rate control for post hoc inference NGOV NG 0 CEEITCHINI S

Joint Family-Wise Error Rate (JER)

Intuition
Given A and B such that:
o |[ANHo(P) <5

. ' o [BNHo(P) <7
( Then we can guarantee:

IRNH1(P)| > 1

Definition

Let ;R = (Rk)k=1...m be a reference family of rejection sets. Then
JER(R) =P(3k € {1,...,m},|Rc N Ho| > k)
Consequently, R is said to control JER at level a € [0, 1] if:

P(Vke{l,...,m}|RkNHo| < k—-1)>1—«
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Joint Family-Wise Error Rate control for post hoc inference NGOV NG 0 CEEITCHINI S

Post hoc inference through JER control

JER control

P(Vke {1,...,m},|RkNHo| <k—-1)>1-a

Upper bound on the number of false positives

Given a JER controlling family (Rx)x=1...m, with probability larger than
1 — «, for any rejection set R,

RN < |R| A i RN(R)|+ k-1
IROMol < [RIA min {[R (RO +k—1)

Applicable to

@ data-driven rejection sets
@ any number of rejection sets
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JER

[llustration

Classical multiple testing Post hoc inference
° T T T T T T el T : T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
FDR < 25% With probability > 75%

|[IRNH1| > 2 and ‘R,ﬁ'Hl‘ >1
How can JER control be achieved?
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Joint Family-Wise Error Rate control for post hoc inference [BISaRee NI N EEC RIS EORTILTE] 3%

Simes' inequality 3

If the p-values (p;), 1 < i< m, are PRDS then
P(3k € {1,...,mo} : qu) < ak/mo) < a,

where g1y < --- < gq denote the ordered p-values under Hg
(1) (mo)

3R. J. Simes. Biometrika 73.3 (1986), pp. 751-754.
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JER control based on Simes' inequality
Simes-based JER control

Corollary of Simes’ inequality
Under PRDS, JER control at level « is achieved by the Simes reference
family:

Re={1<i<m:p <ak/m}y,)1<k<m

Proposition (Post hoc bound for the Simes family)
Under PRDS, with probability larger than 1 — «, for any R,

R < IR 1{p; > ak k—1
|[RNHo| < | |A1<T'<”|R|{Z {pi > ak/m} + }

@ We recover the bound obtained by Goeman and Solari (2011)
@ JER: a generic device to build post hoc bounds

v
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Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1 — «, for any R,

< i ; —
RN Ho| < [RIA min I_Z’:?l{p,>a/ka/m}+k 1y,

Cn=31_1k™1 ~log(m): Hommel's correction factor for dependency*

Dependence-free adjustment is not a sensible objective

@ implies adjusting to a worst case dependency
@ very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

*G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423-430.
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Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Sharpness and conservativeness of the Simes family

Simes’ equality is sharp under independence, but conservative under positive

dependence.

Conservativeness of JFWER control under PRDS

Toy example: Gaussian equi-correlation, white setting (mo = m = 1,000):
Test statistics ~ A(0,X) with X; =1 and X;; = p for i # J.

Equi-correlation level: p 0

0.1

0.2

0.4

0.8

Achieved JFWER xa~1 | 0.99

0.85

0.72

0.42

0.39

Can we build a family achieving sharper JFWER control?

We want to be adaptive to dependency
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Skl Colicns
JER control with A\ adjustment

Rejection kernel

Consider the reference family:

Re={1<i<m: p<t(a)},1<k<m,
where t,(0) = 0 and t,(-) is non-decreasing and left-continuous on [0, 1]
e Example (Simes family): tx(a) = ak/m

The associated rejection kernel is the collection of (tx(A)k=1...m) for all
0<A<1

Single-step A adjustment

A(a) = max {)\ >0: P(lg)(igK{tk—l (P(k:H)>} < A) < a}.

The family R (4) controls JER at level a.

4
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Calibration of a ejecion kernel
Calculating the adjustment factor \(«)

AMa) = max{A >0: P(lg)(igK{tkl (p(k:q_[))} < )\) < a}

Calculating A(«) requires the knowledge of the distribution of (p(s.))«!

Using Monte-Carlo approximation if the joint null distribution is known
@ see below example of Gaussian equi-correlation
e more in G. Blanchard, P. Neuvial, E. Roquain (2017), arxiv:1703.02307

v

Permutation testing is justified in some applications, including:
o differential expression analyses
e GWAS with discrete (case/control) or quantitative phenotype

(restriction: the reference thresholds t must be deterministic)
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

JER control with A\ adjustment for the linear kernel

Example under positive dependency (Gaussian equi-correlation)
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With probability > 1 — a = 75%:

tk(a)

Lower bound on |R N H,|

T
100

ak/m
aXa)k/m

IRNHi|>2and [RFNH1| > 1
‘Rﬂ’Hﬂ >3 and |R/ﬂ7‘[1| >2
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

JER control under Gaussian equi-correlation

o X; ~ N(0,1) under Hy
Timte @ X~ N(ji,1) under Hy
+;§E§w o cor(Xj, Xj) = p for

i #]
02 | ' e a=0.25

oy

660
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

Estimation power for under Gaussian equi-correlation

TH:0.8-F:25 T:09-1:3 T:0.99-1:43
1.00-
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050~ it / 2
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g os0- [ e /: fi Balanced (K=m) . .
L = i#]
g < -~ Simes
z —
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Estimation power:
E(5(H1))/m
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R
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

Conclusions

Summary

@ JER: a new risk measure for multiple testing
@ generalizes existing post hoc procedures
@ can be used to build post hoc inference procedures

Results not discussed here

@ Other choices for the kernel

@ Step-down procedures

e Control of P(Vk € {1,...,K},|Rk N Ho| < (k)
@ Detection power: connection to “higher criticism” in a sparse setting )

Ongoing/future works

@ Applications to GWAS, differential expression and neuro-imaging
@ Structured rejection sets: algorithms and statistical results
@ Software and visualization tools

v
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel
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