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Post hoc inference Introduction

Genome-Wide Association Studies

Typical analysis steps
1 define a list of candidates using a multiple testing procedure
2 refine this list based on prior knowledge (genome regions)

Limitations
Initial selection does not take advantage of available prior knowledge
No formal risk assessment can be made on the resulting candidate sets
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Post hoc inference Introduction

Other motivating examples
Cancer studies Neuroimaging

Differential gene expression analyses Activation of brain regions

Typical analysis steps
1 define a list of candidates using a multiple testing procedure
2 refine this list based on prior knowledge (gene pathways, brain regions)

Limitations
Initial selection does not take advantage of available prior knowledge
No formal risk assessment can be made on the resulting candidate sets
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Post hoc inference Objective

Multiple testing: notations

H = {1, . . .m} m null hypotheses to be tested
H0 ⊂ H: true null hypotheses, H1 = H \H0

(pi )1≤i≤m: p-values

Multiple testing procedures
Aim at building from the data a set R of rejected hypotheses satisfying a
statistical guarantee, e.g. controlling:

(k-)Family-Wise Error Rate: k-FWER = P(|R ∩H0| > k − 1)
False Discovery Rate: FDR = E

(
|R∩H0|
|R|∨1

)
Most procedures used in applications are thresholding procedures:

R = {i ∈ H, pi ≤ t̂}
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Post hoc inference Objective

Post hoc inference

Goal: Confidence statements for the number of true/false positives on any
number of arbitrary rejection sets, possibly selected after data analysis

Formal objective
Find V α, Sα such that ∀R ⊂ {1 . . .m},

P(|R ∩H0| ≥ V α(R)) ≥ 1− α

P(|R ∩H1| ≤ Sα(R)) ≥ 1− α
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Post hoc inference Objective

Post hoc inference in a nutshell

Classical multiple testing Post hoc inference
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FDR ≤ 25% With probability ≥ 75%
|R ∩H1| ≥ 2 and |R ′ ∩H1| ≥ 1
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Post hoc inference Objective

State of the art: Goeman and Solari (2011)

Existing post hoc procedures1 are based on closed testing2

Require testing all 2m − 1 possible intersections between the m original
hypotheses!
Not feasible for m ≥ 20 or 30.

In practice: “shortcuts”
computationally efficient procedures (complexity ∼ m log(m))
increased conservativeness and/or narrower applicability:
Simes’ shortcut: valid under positive dependence between hypotheses
(PRDS)

1Multiple testing for exploratory research. Stat. Science (2011)
2Marcus, Peritz and Gabriel, Biometrika (1976).
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JER

Joint Family-Wise Error Rate (JER)

Intuition

R

A

B
.

=⇒.⇒
Given A and B such that:
|A ∩H0(P)| ≤ 5
|B ∩H0(P)| ≤ 7

Then we can guarantee:
|R ∩H1(P)| ≥ 1

Definition
Let R = (Rk)k=1...m be a reference family of rejection sets. Then

JER(R) = P
(
∃k ∈ {1, . . . ,m}, |Rk ∩H0| ≥ k

)
Consequently, R is said to control JER at level α ∈ [0, 1] if:

P
(
∀k ∈ {1, . . . ,m}, |Rk ∩H0| ≤ k − 1

)
≥ 1− α
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JER

Post hoc inference through JER control

JER control

P
(
∀k ∈ {1, . . . ,m}, |Rk ∩H0| ≤ k − 1

)
≥ 1− α

Upper bound on the number of false positives
Given a JER controlling family (Rk)k=1...m, with probability larger than
1− α, for any rejection set R,

|R ∩H0| ≤ |R| ∧ min
1≤k≤|R|

{|R ∩ (Rk)c |+ k − 1}

Applicable to
data-driven rejection sets
any number of rejection sets

Pierre Neuvial (IMT) Post hoc inference via multiple testing MCP 2017, UC Riverside 10 / 22



Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JER

Illustration
Classical multiple testing Post hoc inference
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FDR ≤ 25% With probability ≥ 75%
|R ∩H1| ≥ 2 and |R ′ ∩H1| ≥ 1

How can JER control be achieved?
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Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Simes’ inequality 3

If the p-values (pi ), 1 ≤ i ≤ m, are PRDS then

P(∃k ∈ {1, . . . ,m0} : q(k) ≤ αk/m0) ≤ α,

where q(1) ≤ · · · ≤ q(m0) denote the ordered p-values under H0

3R. J. Simes. Biometrika 73.3 (1986), pp. 751–754.
Pierre Neuvial (IMT) Post hoc inference via multiple testing MCP 2017, UC Riverside 12 / 22



Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Simes-based JER control

Corollary of Simes’ inequality
Under PRDS, JER control at level α is achieved by the Simes reference
family:

Rk = {1 ≤ i ≤ m : pi ≤ αk/m}, 1 ≤ k ≤ m

Proposition (Post hoc bound for the Simes family)
Under PRDS, with probability larger than 1− α, for any R,

|R ∩H0| ≤ |R| ∧ min
1≤k≤|R|

∑
i∈R

1 {pi > αk/m}+ k − 1

 .
We recover the bound obtained by Goeman and Solari (2011)
JER: a generic device to build post hoc bounds

Pierre Neuvial (IMT) Post hoc inference via multiple testing MCP 2017, UC Riverside 13 / 22



Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1− α, for any R,

|R ∩H0| ≤ |R| ∧ min
1≤k≤|R|

∑
i∈R

1 {pi > α/Cmk/m}+ k − 1

 ,

Cm =
∑m

k=1 k−1 ∼ log(m): Hommel’s correction factor for dependency4

Dependence-free adjustment is not a sensible objective
implies adjusting to a worst case dependency
very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

4G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423–430.
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Joint Family-Wise Error Rate control for post hoc inference JER control based on Simes’ inequality

Sharpness and conservativeness of the Simes family

Simes’ equality is sharp under independence, but conservative under positive
dependence.

Conservativeness of JFWER control under PRDS
Toy example: Gaussian equi-correlation, white setting (m0 = m = 1, 000):
Test statistics ∼ N (0,Σ) with Σii = 1 and Σij = ρ for i 6= j .

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8
Achieved JFWER ×α−1 0.99 0.85 0.72 0.42 0.39

Can we build a family achieving sharper JFWER control?

We want to be adaptive to dependency
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Adaptive Joint Family-Wise Error Rate control Calibration of a rejection kernel

JER control with λ adjustment

Rejection kernel
Consider the reference family:

Rk = {1 ≤ i ≤ m : pi ≤ tk(α)}, 1 ≤ k ≤ m ,

where tk(0) = 0 and tk(·) is non-decreasing and left-continuous on [0, 1]

Example (Simes family): tk(α) = αk/m

The associated rejection kernel is the collection of (tk(λ)k=1...m) for all
0 ≤ λ ≤ 1

Single-step λ adjustment

λ(α) = max
{
λ ≥ 0 : P

(
min

1≤k≤K

{
t−1
k

(
p(k:H)

)}
≤ λ

)
≤ α

}
.

The family Rλ(α) controls JER at level α.
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Adaptive Joint Family-Wise Error Rate control Calibration of a rejection kernel

Calculating the adjustment factor λ(α)

λ(α) = max
{
λ ≥ 0 : P

(
min

1≤k≤K

{
t−1
k

(
p(k:H)

)}
≤ λ

)
≤ α

}
Calculating λ(α) requires the knowledge of the distribution of (p(k:H))k !

Using Monte-Carlo approximation if the joint null distribution is known
see below example of Gaussian equi-correlation
more in G. Blanchard, P. Neuvial, E. Roquain (2017), arxiv:1703.02307

Permutation testing is justified in some applications, including:
differential expression analyses
GWAS with discrete (case/control) or quantitative phenotype

(restriction: the reference thresholds t must be deterministic)
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

JER control with λ adjustment for the linear kernel
Example under positive dependency (Gaussian equi-correlation)
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With probability ≥ 1− α = 75%:
tk(α) Lower bound on |R ∩H1|
αk/m |R ∩H1| ≥ 2 and |R ′ ∩H1| ≥ 1
αλ(α)k/m |R ∩H1| ≥ 3 and |R ′ ∩H1| ≥ 2
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

JER control under Gaussian equi-correlation
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

Estimation power for under Gaussian equi-correlation
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel

Conclusions

Summary
JER: a new risk measure for multiple testing
generalizes existing post hoc procedures
can be used to build post hoc inference procedures

Results not discussed here
Other choices for the kernel
Step-down procedures
Control of P

(
∀k ∈ {1, . . . ,K}, |Rk ∩H0| ≤ ζk

)
Detection power: connection to “higher criticism” in a sparse setting

Ongoing/future works
Applications to GWAS, differential expression and neuro-imaging
Structured rejection sets: algorithms and statistical results
Software and visualization tools
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Adaptive Joint Family-Wise Error Rate control Numerical experiments: known dependence, linear kernel
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