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Introduction
What is a Two-stage Procedure?

In large-scale multiple testing, a natural testing strategy is to

@ Stage 1. reduce the number of tested hypotheses by some
selection (screening or filtering) process;

@ Stage 2. simultaneously test the selected hypotheses by using
some conventional multiple testing method.
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Introduction
Practical Application Examples

Two-stage procedures have been extensively used in various practical
applications (McClintick and Edenberg, 2006; Talloen et al., 2007;
Hackstadt and Hess, 2009). Examples include

@ Detecting differentially expressed genes across conditions in
microarray experiments.

@ Detecting brain voxels associated with a task in fMRI studies.

@ Detecting adverse events associated with a new drug in clinical
trials.

@ Detecting genetic variants associated with a trail in genome-wide
association studies.
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Related Methods

@ Independent filtering: Bourgon et al. (2010), Dai et al. (2012),
and Kim and Schliekelman (2016).

@ Sample splitting: Cox (1975), Rubin et al. (2006), and
Wasserman and Roeder (2009).

@ Data-driven weighted methods: Fino and Salmaso (2007),
Ignatiadis et al (2016), Li and Barber (2016), and Lei and Fithian
(2016).

@ Selective inference methods: Benjamin and Yekutieli (2005),
Taylor and Tibshirani (2015), Berk et al (2013), Barber and
Candés (2015), Lee et al (2016), Fithian et al. (2014), etc.

@ Other methods exploiting covariate information: Cai and Sun
(2009), Yoo et al. (2010), Hu et al. (2010), Du and Zhang (2014),
etc.
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Advantages of Independent Filtering

In this talk, we mainly focus on the method of independent filtering. It
has several advantages:

@ completely removes the selection effect in the control of type 1
error rate;

@ reduces the multiplicity effect;

@ does not “waste” data while carrying out both selection and
testing.

7/48



Introduction
The Key Issues

It has also several key issues remaining for independent filtering:
@ Asymptotic power analysis;

@ Construction of selection rules, including choice of selection
statistics and determination of selection thresholds;

@ Comparison with the corresponding conventional (one-stage)
multiple testing methods;

@ Type 1 error rate control under dependence;

@ Statistical interpretation: quantifying the effects of various factors
on performance of independent filtering.
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Basic Setup
Basic Setup

Consider a stylized Gaussian model:

@ Assume that fori=1,..., m, a sample of size n from a normal
population with unknown mean ; and variance o2 is observed;
that is, data

id _
X,'jlrlw N(,u,-,a,?), f=1,...,n

@ The m samples are assumed to be mutually independent.
@ Fori=1,..., m, consider testing hypotheses

Hi:pi=0 wvs. Hj:uj#0.
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Basic Setup

Basic Setup (Cont.)

@ Define the selection and test statistics

\/ﬁyn,i

N

On,i

n
2
Sn,i = ZX"J and Tn,i =
j=1

@ The basic two-stage strategy for our method: the statistics S,
are first used to “select” which of the hypotheses to “test” in the
second stage, at which point the statistics T, ; are used.

@ Basic facts: under H; : u; = 0, we have that
8,7,,'/0',-2 ~ X,27 and Tn7,' ~ tn_1 .

But, the more important reason motivating our choice is that, by
Basu’s theorem, S, ; and T, ; are independent under H;
(Lehmann and Romano, 2005).
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Basic Setup

Basic Setup (Cont.)

@ In our asymptotic analysis, the following is always assumed.

Assumption A1: limm_. %67 = d,0 < d < oo, where d is a
nonnegative constant.

@ Let |/ 1| denote the number of false null hypotheses. In our
asymptotic power analysis, some degree of sparsity regarding
|Im.1| is often assumed.

Assumption A2: |/, 1| < m'~ for some 0 < e < 1,
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Two-stage Single Hypothesis Testing

@ For selecting and detecting single true null hypothesis
H; : ni = 0 by using independent filtering, the type 1 error rate of
rejecting H; is

Pr,,—o{H; selected and detected}
= Pr,—o{H; selected} - Pr, _o{H, detected}. (1)
In (1), the first and second terms are type 1 error rates of selection
and detection, respectively.

@ For example, in order to ensure the type 1 error rate controlled at
level «, it is enough to control type 1 error rate of detection at level
5« if the chance of selecting H; is 20%.
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Basic Setup

Two-stage Single Hypothesis Testing (Cont.)

@ For selecting and detecting single false null hypothesis H; by
using independent filtering, the power of rejecting H; is

Pr,.{H; selected and detected}
= Pr,{H, selected} - Pr,, {H; detected|H; selected},

where Pr, {H; selected} is the power of selection and
Pr.,{ H; detected|H; selected} is the conditional power of detection
based on the event of H; being selected.

@ Thus, selection affects the overall power of independent filtering.
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Error Control in Two-stage Procedures

Basic Two-stage Bonferroni-type Procedure

Firstly, we consider two-stage procedures where the selection
thresholds are fixed.

Procedure 1

@ Stage 1. Fori = 1,...,m, given a fixed threshold u;, H; is selected
iff Sp ;i > u;. Let Sy denote the indices of selected hypotheses.

Qo Stage 2. Apply the Bonferroni test to selected hypotheses H; with
i € Sp; that is, reject H; iff | Thil > th—1(1 — 515, ‘) the 1 — a/2|5,|

quantile of the t-distribution with n — 1 degrees of freedom.

Theorem 1

For any choice of the sequence of fixed selection thresholds u;, the
above Procedure 1 controls the FWER at level .

| N\

.
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Error Control in Two-stage Procedures
Remarks on Procedure 1

@ The sequence of selection thresholds u; is fixed but arbitrary.

@ No matter the variances a,? are known or unknown, Procedure 1
always controls the FWER at level a.

@ The FWER control of Procedure 1 only requires that any test
statistic 7, ; be independent of the selection statistics
Sni,.-.,Snm, if Hjis true.

@ More generally, the FWER control of Procedure 1 even holds
outside our stylized Gaussian model.
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Error Control in Two-stage Procedures

Two-stage Holm-type Procedure

Let p,; denote the marginal p-value when testing H; based on | T, |.
Let p,; be one if H; is not selected and equal to p,; if it is selected. Let
Pnr, < Pnr, < -+ < Pn.r, denote the ordered p-values.

Procedure 2
@ Stage 1. Fori — Qoo il given a fixed threshold u;, H; is selected
iff Sp.i > u;. Let S, denote the indices of selected hypotheses.

Q Stage 2. Apply Holm's procedure to selected hypotheses H; W/th
i € 8p; that is, reject H; iff Pn,r; < af/(|8p| —j+1) forj =1,

Theorem 2
For any choice of the sequence of fixed selection thresholds u;, the
above Procedure 2 controls the FWER at level . )

| A\
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Error Control in Two-stage Procedures
Choice of Selection Thresholds

Depending on different assumptions regarding the variances a,?,
we choose different forms of selection thresholds:

@ Known variance: Fori=1,..., m, let the selection threshold
u; = 02x2(1 — 8) and common parameter 3 = m’~" with
0 < v <1, which is fixed. Such selection thresholds ensure that
roughly 8m = m" hypotheses are selected for testing.

@ Unknown and unequal variance: Forji=1,..., m, let the
selection threshold u; = 52x2(1 — 8) and 8 = m"~" with
0 < v < 1, where 42 is an estimate of o2 independent of the
selection and test statistics.
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Error Control in Two-stage Procedures

Choice of Selection Thresholds (Cont.)

@ Unknown but equal variance: Assume o2 = g2 fori =1,...,m.
Let 62 denote an overall estimator of o2, which satisfies

1

@ Fori=1,...,m, let the selection threshold u; = °x2(1 — /3) and
B =m"~" with 0 < v < 1. Note that u; is the same but random.
Such selection thresholds ensure that roughly gm = m”
hypotheses are selected for testing.

20/48



Error Control in Two-stage Procedures

Modified Two-stage Bonferroni-type Procedure

Based on the random selection threshold set for the case of
unknown but equal variance, we develop a modified two-stage
Bonferroni-type procedure, for which Theorem 1 is not applicable.

Procedure 3

@ Stage 1. Given a random threshold &1 = 62x5(1 — ) and
B=m~"with0 < v <1, H, is selected iff S,,; > 0. Let S, denote
the indices of selected hypotheses.

Qo Stage 2. Apply the Bonferroni test to selected hypotheses H; with
i € Sp; that is, reject H; iff|Thil > th—1(1 — | ) the 1 — a/2|5,|

quantile of the t-distribution with n — 1 degrees of freedom.
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Error Control in Two-stage Procedures

Modified Two-stage Bonferroni-type Procedure (Cont.)

Theorem 3

Assume Assumption A1.

(i) Forv > 1/2, the above Procedure 3 asymptotically controls the
FWER as m — oo.

(ii) Fory =1/2 and d > 0, the above Procedure 3 asymptotically
controls the FWER as m — oco. In fact, the same is true if

1 e log(1+€*)
1= =
L T B )
where

€ =2(1-7)d+c*(y,d)v(1 —7)d,
and c* (v, d) will be defined later.
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Asymptotic Power Analysis
Basic Idea of Power Analysis

@ We break up the power analysis of two-stage procedures in two
parts: the first part analyzes the probability of “selection” in the
first stage, while the second will analyze the probability of
“detection” in the second stage.

@ Rejection of false null H; then occurs when both H; has been
selected at the first stage and then detection occurs at the second
stage.
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Asymptotic Power Analysis

Two Technical Results

To perform asymptotic power analysis, we need to derive bounds on
extreme t-distributed and Chi-squared quantiles (Fujikoshi and
Mukaihata, 1993; Inglot, 2010).

Lemma 1
Fixany0 < o <1 and§ > 0. Then, for all m large enough,

(6 — o e
a1 = 22 VT [erp( 021,y

and

—-15

1/2
t, 1(1——)<\/n— [exp(zIOg( ))1] .
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Asymptotic Power Analysis

Two Technical Results (Cont.)

Let g(x) = eX*X;*X, which is increasing on (0, o). Then, define
alc)=[g7"(2/c?) /0]2, which is decreasing in c.

Lemma 2

Given the value v used in stage one for selection with 5, = m"~', and
d in Assumption A1, with d > 0, define c* = c*(~y, d) to be the solut/on
of the equation a(c) = (1 —~)d .

(i) For any ¢ > c¢* and sufficiently large n,

Xn(1 — Bm) < n+2log <5m> + ¢/ nlog <ﬁ1m>

(i) For any ¢ < ¢* and sufficiently large n,

X%(1 — Bm) > n+2log (;m) +CM'

| o]
»
I N
o
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Asymptotic Power Analysis

Power Analysis: Known Variance

Firstly, we study the power of our two-stage Bonferroni-type procedure
under known variance.

@ For each H,, its selection threshold u; is of the form
ui=o02x%(1 - p)and 3 = m !, where 0 < v < 1.

@ Hypothesis Hj is selected iff Sp1 > o?x3(1 — m7~1).
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Asymptotic Power Analysis

The Probability of Selecting Non-Null

Lemma 3
(i) Under Assumption A1, if

pZjo? > 2(1 = y)d + c*(v,d)/(1 —)d , (2)

then limm—o Py, {H; selected} =1 .
(if) Under Assumption A1, if

Wi fof <2(1 =7)d +c*(y,d)V(1 —7)d (3)

then limm_. Py, {H; selected} =0 .

Remark: if d = 0, then the condition (2) always holds, while in (ii) if
d = 0 the condition (3) never holds, which implies H; is selected with
probability tending to one.
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Asymptotic Power Analysis

The Probability of Detecting Non-Null y;

We now consider the probability that u; is detected at the second stage
using the t-statistic T, ;.

Under Assumptions A1 and A2, we have
(i) when u2/o? > €19 —1, limp_o P, {H; detected} = 1;
(i) when p2/o? < €79 —1, limm_.~ P, {H; detected} = 0.

Remark: If d =0, then P, {H; detected} — 1 for any p; > 0.
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Asymptotic Power Analysis

Asymptotic Power Analysis: Known Variance

Combining Lemma 3 and 4, we have

Theorem 4
Under Assumptions A1 and A2, we have

U)Mwmﬁh%ﬂmﬂéw—LZU—ﬂd+ﬁhﬂ%%1—ﬂﬂ,

im P, {H; rejected} =1 ;

(i) when p?/o? < max{€?? —1,2(1 — 7)d + ¢*(v,d)/(1 — 7)d} ,
Jim P,.{H; rejected} =0 .
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Asymptotic Power Analysis
Remarks on Asymptotic Power Analysis

@ The asymptotic average power of this two-stage procedure is
roughly the proportion of non-null means p; satisfying the
inequality in Theorem 4 (i).

@ Specifically, if d = 0, then limpm_,o Py, {Hi rejected} = 1 for any
given 0 < v <1 and any u; # 0. The fact implies that the
asymptotic average power of this two-stage procedure is equal
to one when d = 0.
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Asymptotic Power Analysis

Determination of Selection Threshold: Known

Variance

@ By minimizing the right-hand side of the inequality in Theorem 4 (i)
or (ii) with respect to ~, one can determine an optimal value ~* of
~ for each given value of d, which maximizes probability of
detecting any false null or average power asymptotically.

@ For the optimal value v* of v, one can determine an optimal
detection threshold for Procedure 1 under known variance,
which is equal to the corresponding value of the right-hand side of
the inequality in Theorem 4 (i) or (ii).

@ Figure 1 depicts the graphs of the optimal value v* of v and the
above optimal detection threshold with respect to d.
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Asymptotic Power Analysis

Determination of Selection Threshold: Known

Variance (Cont.)

Optimal value of y Optimal detection threshold
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Figure 1: The optimal value (left) of v+ and the optimal detection threshold
(right) of 12 /o2 for Procedure 1 under known variance.

33/48



Asymptotic Power Analysis

Asymptotic Power Analysis: Unknown Variance

Next, we study the power of our two-stage Bonferroni-tyle procedure
under unknown and unequal variance.

@ For each H,, its selection threshold u; is of the form
ui=62x3(1 —B)and 8 = m’~', where 0 < v < 1and 4% is an
estimate of o2 constructed based on some pilot data or by using
sample splitting method.

@ Hypothesis Hi is selected iff Sp1 > 62x3(1 — m"~1).

@ Under certain conditions on &,-2, one can derive a similar result of
asymptotic power analysis as Theorem 4.

@ By using a similar way as in the case of known variance, one can
determine an optimal value v* of ~ for each given value of d.
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Comparison with Other Methods

Method Comparison: Known Variance

@ Under known variance, we compare our Procedure 1 with the
original Bonferroni method based on Z-statistics through
asymptotic power analysis.

o letZ,;, = ‘f Y_2nl - Consider the Bonferroni method based on
Z-statistic Z,,,, which rejects H; if |Z, ;| > Z(1_p.

Under Assumption A1, for the original Bonferroni method based on
Z-statistics, we have
(i) when 12 /o2 > 2d, limm_e0 Py, {H; rejected} = 1.

(i) when p2 /o? < 2d, limm_c0 Py, {Hi rejected} = 0.
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Comparison with Other Methods

Method Comparison: Known Variance (Cont.)

@ Result 1 shows the detection threshold of the original Bonferroni
procedure based on Z-statistics is an exact linear function of d
with the slope of 2.0.

@ Figure 1 demonstrates that the optimal detection threshold of our
Procedure 1 under known variance is almost linear in terms of d
with the slope being about 2.001.

@ The above two facts shows that Procedure 1 has almost the same
asymptotic power performance as the original Bonferroni based
on Z-statistics if its selection threshold is optimally determined.

@ The original Bonferroni procedure based on Z-statistics is optimal
in some sense (Candes, Stats 300C, Lecture Note 2, Stanford
2016). Thus, our two-stage Bonferroni is almost optimal under
known variance, although t-statistics are used as the test
statistics for tested hypotheses.
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Comparison with Other Methods

Method Comparison: Unknown Variance

@ Under unknown variance, we compare our Procedure 1 with the
original Bonferroni method based on t-statistics and the split
sample method.

@ Consider the original Bonferroni method based on t-statistics,
which rejects H; if [T, ;| > th1(1 — 55)-

Assume Assumption A1. For the original Bonferroni method based on
t-statistics,

(i) when 12 /o2 > €29 — 1, limm_yc0 Py, {H; rejected} = 1.

(i) when ,u,z/cr,-2 < €2 1, limp_o P, {H; rejected} =0 .
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Comparison with Other Methods
Split Sample Method

@ Split the sample in two n = ny + n, independent parts. For

k =1,2, suppose T,(,'? denotes the t-statistic computed on the kth
subsample of size ny for testing H;.

@ H;is selected in the first stage if ]T,S?\ > u, for some threshold v.
Let |S,| denote the number of selected hypotheses.
@ Hi; is rejected at the second stage if also

(07

25|

T >ty 1 (1 = =) .

@ For any cutoff u used for selection, this procedure controls the
FWER at level a.
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Comparison with Other Methods

Split Sample Method (Cont.)

Taking the selection threshold u to be of the form
U=ty _1(1—m~1/2) for some 0 < v < 1, we have

Assume Assumption A1 and A2. Also assume ny/n — r. For the
above split sample method,

(i) when p2 /o? > max [exp(w) exp(%)] -1,

lim P, {H; rejected} =1 .

m—

(i) when p /a < max |:exp( v)d) exp(z’yd)} 1,

lim P, {Hj rejected} =0 .

m—
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Comparison with Other Methods

Remarks on Method Comparison

@ |deally, the optimal detection threshold of our Procedure 1 under
unknown variance is almost a linear function with the slope of
2.001.

@ Based on Result 2 and 3, one can find out that the optimal
detection thresholds of the original Bonferroni based on t-statistics
and the split sample method are both exponential functions of d.

@ The above facts implies that our two-stage procedure is more
powerful than the original Bonferroni based on t-statistics
asymptotically if its selection threshold is optimally determined.

@ Figure 2 shows comparison of their optimal detection thresholds.
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Comparison with Other Methods

Comparison of Optimal Detection Thresholds

Optimal detection threshold
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Figure 2: The optimal detection thresholds of our Procedure 1 (TS Bonf.) and
the original Bonferroni procedure (Bonf.) based on f-statistics.
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The Dependence Issue
Weak Dependence

@ We consider Procedure 1 in the case of known variance, where
the selection thresholds u; = o2x2(1 — m'~1).

@ Let |/no| and |§n,o\ denote the numbers of all true nulls and
selected true nulls, respectively. We make the following
assumptions regarding |/mo| and | Sy ol-

Assumption B1: ""0‘ — 7o asm— oo, wWhere0 < mg < 1isa
fixed constant.

Assumption B2:

|Sn0‘

A 7o as m— .

Assume Assumptions B1 and B2. Procedure 1 with the selection
thresholds u; = o2x2(1 — m'=") fori = 1, ..., m, asymptotically
controls the FWER at level «.
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The Dependence Issue

Arbitrary Dependence

We still consider Procedure 1 in the case of known variance. By
modifying its random detecting threshold at the second stage, we
can develop an improved version of Procedure 1 below.

Procedure 4
@ Given a fixed threshold u; = o?x3(1 — B), H; is selected iff
Sni > u;, where 0 < 3 < 1 is any give positive constant.
Q@ Apply a single-step test with common critical value «/3m to the
selected hypotheses; that is, reject H; iff | Tni| > th—1(1 — 555), the
1— 255 quantile of the t-distribution with n— 1 degrees of freedom.

v
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The Dependence Issue

Arbitrary Dependence (Cont.)

Theorem 6

For any choice of the value of 3, the above Procedure 4 strongly
controls the FWER at level o under arbitrary dependence.

Remarks:

@ Note that E[|S,[] > 8m, thus Procedure 4 is on average more
powerful than Procedure 1 under known variance.

@ Compared with Procedure 1, one limitation of Procedure 4 is that
its FWER control is more dependent on the assumption of known
variance. For Procedure 1, even though the assumption does not
hold, its FWER control is still valid for any fixed selection
thresholds.
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Conclusion
Conclusion

@ Introduce a selection rule by using the idea of independent
filtering.

@ Develop two-stage Bonferroni-type procedures by combining
conventional Bonferroni procedure with the selection rule, along
with different forms of selection thresholds to adapt to different
settings.

@ Discuss some important theoretical and practical problems,
including FWER control, asymptotic power analysis, determination
of selection thresholds, and the dependence issue.

@ Through asymptotic power analysis, compare the two-stage
procedures with other related procedures and obtain two
interesting findings.

@ The same idea and techniques are being applied to develop

two-stage BH-type procedures for controlling the FDR.
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