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1. Introduction

• A parallel arm trial to compare a treatment with a control on
a primary and a secondary endpoint hierarchically using a
group sequential design (GSD).

• Gatekeeping condition: The secondary endpoint is tested only
if the primary endpoint is significant.

• How to choose group sequential boundaries for the two
endpoints to control familywise α?

• The primary endpoint can be tested using any α-level group
sequential boundary.

• How to test the secondary endpoint and how to choose the
primary-secondary boundary combination to maximize primary
and secondary powers?



2. Previous Works

• Hung, Wang & O’Neill (2007), J. Biopharm. Stats.: For the
two looks case, showed numerically that the common
gatekeeping strategy for ordered hypotheses of propagating α
from rejected H1 to H2 inflates FWER when used in a GSD.
Proposed some ad-hoc strategies to fix this, e.g., test H2 at
level α/2.

• Tamhane, Mehta & Liu (2010), Biometrics: For the two looks
case, showed analytically Hung et al.’s (2007) result. Also
showed that the secondary boundary can be relaxed to have
level α′ > α.

• Glimm, Maurer & Bretz (2010), Stats. in Medicine: Many
results similar to Tamhane et al. (2010). Also considered
several extensions of the basic procedure.



Plot of FWER for Hung et al.’s (2007) α-Propagation
Strategy
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3. Problem Formulation

• Bivariate normal responses on the primary and secondary
endpoints with means (µt1, µt2) for the treatment and
(µc1, µc2) for the control.

• Assume the variances (σ21, σ
2
2) and the correlation coefficient

ρ are common for the two groups.

• This normality setup applies asymptotically to broad types of
data including survival and binary data.

• GSD with K ≥ 2 looks (stages).

• Assume fixed boundaries. Primary boundary: (c1, . . . , cK),
Secondary boundary: (d1, . . . , dK).



3. Problem Formulation (Cont’d.)

• Let δ1 = µt1 − µc1 = primary treatment effect and
δ2 = µt2 − µc2 = secondary treatment effect.

• Test null hypotheses H1 : δ1 = 0 and H2 : δ2 = 0 against
upper one-sided alternatives.

• Strongly control the familywise error rate (FWER):

FWER = P{Reject at least one true Hi (i = 1, 2)} ≤ α.

• Since R2 = (RejectH2) ⊆ R1 = (RejectH1),

P (R1 ∪R2|H1) = P (R1|H1) ≤ α,

so to control the FWER under H1, the primary boundary
must be of level α.



3. Problem Formulation (Cont’d.)

• Assume ni patients on each treatment arm at the ith stage.
Let Ni = n1 + . . .+ ni denote the cumulative sample sizes
and by ti = Ni/NK the information times (1 ≤ i ≤ K).

• At the ith look, let (Xi, Yi) denote the standardized sample
mean test statistics for the two endpoints.

• Procedure Pa (Stagewise Hierarchical Rule): Reject H1 if
Xi > ci for some i ≤ K. Then test H2 and reject it if Yi > di.
The trial stops when H1 is rejected (regardless of whether H2

is rejected or not) or when the trial ends.

• Note H2 has only one chance of being tested. Will consider an
extension later.



3. Problem Formulation (Cont’d.)

• (Xi, Yi) are bivariate normal with mean vector (∆1i,∆2i)
where

∆1i =
δ1
σ1

√
Ni

2
, ∆2i =

δ2
σ2

√
Ni

2
(1 ≤ i ≤ K)

and correlation structure which depends on ρ and the
γi =

√
ti.

• Define the standardized treatment effects for the two
endpoints by

∆1 = ∆1K =
δ1
σ1

√
NK

2
∆2 = ∆2K =

δ2
σ2

√
NK

2
.

Then ∆1i = γi∆1 and ∆2i = γi∆2.



4. Primary Boundary

• Theorem: Suppose (X1, . . . , XK) has a multivariate normal
distribution (more generally an MLR distribution) defined
above. Consider two α-level group sequential tests with the
same total sample size: Test A with boundary (a1, . . . , aK)
and Test B with boundary (b1, . . . , bK) for testing H1: δ1 = 0
vs. δ1 > 0. If for some k∗ ≤ K − 1, ai > bi for i = 1, . . . , k∗

and ai < bi for i = k∗ + 1, . . . ,K then Test A is uniformly
more powerful than Test B for all δ1 > 0.

• Idea of the proof: Test A tends to stop later than Test B and
hence tends to take more observations. Hence using the
likelihood ratio test, A is more powerful than B.



OBF and POC Two-Sided Boundaries for α = .05
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• Corollary: The O’Brien-Fleming (OBF) boundary is uniformly
more powerful than the Pocock (POC) boundary.



5. Secondary Boundary

• Control the FWER under H2 : δ2 = 0 when H1 is false. We
refer to this FWER also as secondary type I error.

• Denote it by α2(∆1, ρ) and let

∆0
1i = (ci − di)/γi (1 ≤ i ≤ K).

• Theorem: We have

α2 = max
∆1,ρ

α2(∆1, ρ) ≤ 1− PH2{Y1 ≤ d1, . . . , YK ≤ dK},

and this bound is sharp iff

∆0
11 = · · · = ∆0

1,K−1 ≥ ∆0
1K and ρ = 1.

• The above condition is satisfied for K = 2 if c1 > d1 and
c2 < d2 (e.g., (c1, c2) is OBF and (d1, d2) is POC) since
∆0

11 > 0 and ∆0
12 < 0.



5. Secondary Boundary (Cont’d.)

• For ρ = 1, under H2 we can write Xi = Yi + ∆1i (1 ≤ i ≤ K)
where Yi ∼ N(0, 1). So

α2(∆1, ρ = 1)

=

K∑
i=1

P{Y1 ≤ c1 − γ1∆1, . . . , Yi−1 ≤ ci−1 − γi−1∆1,

Yi > max(ci − γi∆1, di)}.

• If α2(∆1, ρ = 1) is plotted as a function of ∆1 then the plot
has sharp peaks where max(ci − γi∆1, di) changes from
ci − γi∆1 to di, i.e., where
∆1 = ∆0

1i = (ci − di)/γi (1 ≤ i ≤ K).



Plot of FWER for ρ = 1 as a Function of ∆1
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5. Refined Secondary Boundary

• The upper bound 1− PH2{Y1 ≤ d1, . . . , YK ≤ dK} on
maxα2(∆1, ρ) is sharp iff

∆0
11 = · · · = ∆0

1,K−1 ≥ ∆0
1K .

• If this condition is satisfied then {d1, . . . , dK} must be an
α-level boundary.

• This condition is satisfied for K = 2 if c1 ≥ d1 and c2 ≤ d2
(OBF-POC boundary combination) but not if c1 < d1 and
c2 > d2 (POC-OBF boundary combination).

• This condition is satisfied for K > 2 only if the primary and
secondary boundaries are identical.

• Otherwise maxα2(∆1, ρ) < α, so the secondary boundary can
be refined to have a level α′ > α.



5. Refined Secondary Boundary (Cont’d.)

• To calculate the refined secondary boundary, set

max
1≤i≤K

α2(∆
0
1i, ρ = 1) = α,

where

α2(∆
0
1i, ρ = 1)

=

K∑
j=1

P{Y1 ≤ c1 − γ1∆0
1i, . . . , Yj−1 ≤ cj−1 − γj−1∆0

1i,

Yj > max(cj − γi∆0
1i, dj)},

where

ck − γk∆0
1i = ck − (γk/γi)(ci − di) (1 ≤ k ≤ j).

• Parameterize di by a single d, e.g., for the POC boundary set
di = d and for the OBF boundary set di = d/γi.

• Solve the above equation for d.



5. Original and Refined Secondary Boundaries (Cont’d.)

Primary Boundary: O’Brien-Fleming, Secondary Boundary: Pocock

Original Refined
K d α2 d α′

2 1.876 0.050 1.876 0.050

3 1.992 0.039 1.881 0.063

4 2.067 0.033 1.877 0.075



6. Effect of ρ

• The least favorable configuration (LFC) ρ = 1 is practically
not likely: An example: noninferiority-superiority testing.

• If true ρ < 1 how much can the secondary boundary be
sharpened? Here are the critical values di = d for the
OBF-POC combination for different ρ.

ρ
K 0.0 0.2 0.4 0.6 0.8 1.0

3 1.645 1.670 1.698 1.729 1.767 1.881

4 1.645 1.669 1.695 1.726 1.767 1.877

• In practice ρ is unknown. In Tamhane, Wu & Mehta (2012)
we showed how to use an upper confidence limit on ρ to
sharpen the secondary boundary for K = 2. We have not
pursued this for K > 2.



7. Simulated Power Comparisons

• Compare two boundary combinations:

1. α-level OBF boundary for H1 and α′-level POC boundary for
H2.

2. α-level OBF boundary for both H1 and H2.

• Plot power vs. ∆2 for ∆1 = 1.0, 3.0, ρ = 0.5,K = 3, α = 0.05.

• Conclusion: OBF-POC combination has higher power
(uniformly for large ∆1).



7. Simulated Power Comparisons (Cont’d.)
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8. Example

• Randomized Aldactone Evaluation Study (RALES) (Pitts et
al. 1999, Wittes et al. 2001).

• Goal: Evaluate the efficacy of spironolactone for patients who
had severe heart failure.

• Multicenter double-blind randomized trial with 811 patients
on the treatment and 831 patients on placebo.

• A group sequential design (GSD) with Lan-DeMets (1983)
flexible boundary using the O’Brien-Fleming (OBF) error
spending function.

• Primary endpoint: All cause deaths, Secondary endpoint:
Sudden CV deaths (not used in the trial for formal α control).



8. Example (Cont’d.)

• The trial was monitored semi-annually by the DMC and
stopped early at the 5th look due to significant efficacy on the
primary (α = 0.025).

• The trial was planned assuming a total of 1080 all-cause
deaths.

• The looks occurred approximately at equal information times
spaced 135 deaths (0.125 units) apart, i.e., total K = 8 looks
in a fixed GSD trial.

• How to choose the primary and secondary boundaries to
control overall α subject to the gatekeeping condition?



8. Example (Primary Endpoint)

Lan-DeMets Boundary Using the OBF Error Spending Function
(α = 0.05) for the Primary Endpoint with Log-Rank Statistics

Look Placebo Treat. Info. Rel. Obs. Crit.
No. Enroll. Deaths Enroll. Deaths Frac. Risk Xi ci
1 563 81 543 59 0.130 0.755 1.820 6.117
2 830 189 809 139 0.304 0.755 2.719 3.903
3 830 254 810 199 0.419 0.803 2.744 3.278
4 830 327 811 251 0.535 0.786 3.357∗ 2.876
5 831 380 811 279 0.610 0.752 4.414∗ 2.704



8. Example (Secondary Endpoint)

Lan-DeMets Boundary Using the Refined POC Error Spending
Function for the Secondary Endpoint with Associated Log-Rank
Statistics

Look Placebo Treat. Info. Rel. Obs. POC’
No. Enroll. Deaths Enroll. Deaths Frac. Risk Yi ci
1 563 29 543 15 0.130 0.536 2.073 2.345
2 830 57 809 44 0.304 0.792 1.270 2.228
3 830 71 810 59 0.419 0.852 1.113 2.257
4 830 91 811 76 0.535 0.855 1.268 2.236
5 831 109 811 82 0.610 0.771 2.224 2.259



9. Extensions

• Procedure Pb (Overall Hierarchical Rule): Continue the trial
after rejection of H1 and sequentially test H2 until it is
rejected or the trial stops.

• Theorem: Denote the secondary type I errors of procedures Pa
and Pb by αa2(∆1, ρ) and αb2(∆1, ρ). Then we have

αb2(∆1, ρ) ≤ 1− PH2{Y1 ≤ d1, . . . , YK ≤ dK}.

This upper bound is sharp iff ρ = 1 and
∆1 ≥ max1≤i≤K(∆0

1i). Therefore the secondary boundary
must have level α.

• Other extensions: Multiple primary and secondary endpoints:
ordered or unordered.
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