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More tests, more (kinds of) problems
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Consider, for now, the Gaussian sequence model :
Xi ~ N(uj, 1), most uj =0, some p; = pu > 0.

m Detection. [s there at least one signal?

m Localization. Which observations correspond to signals?

m Estimation. What are the values of these signals?



Natural notions of error
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m Detection.
m Type-l error (level) for global null
m Power against sparse alternatives (eg: higher criticism)
m Localization.
m FDR: proportion of wrong rejections (this work)
m False non-discovery rate (FNR): proportion of missed

signals (this work)
m Another option for future work — FWER.
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Signal can be weaker
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...or stronger
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Signals can be more sparse
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Sparse (generalized) Gaussians model
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m Sparsity. #signals=n'"? < n, 0< B < 1.
= Distributions. Tails ~ exp ( — @), y>1
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m Signal strength. Signals shifted positively by

i = (yrlogn)*”

= +/2rlogn (this talk)



Sparse (generalized) Gaussians model
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” m Sparsity. #signals=n'"? < n, 0< B < 1.
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~ = 2 = Gaussian-like tails (this talk)
m Signal strength. Signals shifted positively by

i = (yrlogn)*”

= +/2rlogn (this talk)

Rate depends on four parameters : n (#signals),
B (sparsity level), r (signal strength), v (tail decay)



Why this parameterization?
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W~ +/2-1-logn— easy
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we~/2-r-logn, 0<r<1— “right" parameterization
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Known results (Detection)
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m Feasible region:
Wainwright r> 6 — % , if % < /3 < %,
(1-vI=B)" if3<p<l

m Higher-criticism (HC) thresholding asymptotically
consistent (?) for detection.




Known results (localization)
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Testing m Combined FDR + FNR : Castro and Chen (?)
feim m r > 3, known algorithms asymptotically consistent
Aaditya m r < 3, no algorithm can be consistent

Ramdas

Viichael | m Complementary work: asymptotic Bayes optimality under
: sparsity (ABOS) (?7?)
m Weighted probability of false positive + false negative by
Bogdan-Chakrabarti-Fromelet-Ghosh
m Bayes classification risk by Neuvial-Roquain

m Complementary work: asymptotic minimax optimality of
BH-derived thresholding (?)
m In the estimation context, for denoising an
approximately-sparse high-dimensional vector, by
Abramovich-Benjamini-Donoho-Johnstone.




The open problems
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m FDR-FNR tradeoff (non-asymptotic, finite sample)
m Minimax rates for FDR + FNR

m Finite-sample optimality of known procedures

We resolve all three.



FDR-FNR tradeoff
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The following trade-off holds must necessarily hold for all
threshold-based multiple testing procedures:

FDR < n "= FNR > n P (45, 7).

y-“distance”: D, (a, b) = |bY/7 — a'/7|" = (Vb — \/a)?

Rate depends on four parameters : n (#signals),
B (sparsity level), r (signal strength), « (tail decay)



Optimal FDR + FNR scaling
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where K, is the unique solution to the fixed point equation

K= Dﬁy(ﬁ—i—/@, r).

Rate depends on four parameters : n (#signals),
B (sparsity level), r (signal strength), v (tail decay)

.. . _1(r—B\2
Explicity — v =2 = k, = 1(55)



Known procedures
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ta(X1, ..., Xs) = min {t € {X,..., X, }: FDP(t) < gn}

m Two popular choices:

——BH | Po(X>t)

FDP  (t) = E0G > 0)/n
—BC, . [#(Xi<—t)+1]/n
FDP  (t) = F0 > 6)/n

m Barber-Candes (BC) works if Pg unknown but
symmetric (?77?)



Optimality guarantee
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BH and BC with target FDR o n™" satisfy:

arin J BH: FDR < n* and FNR < n D (545, 7)

ight

BC: FDR<n ™" and FNR < max{n", nDx (84, ) ).

BH always achieves the optimal tradeoff.
BC achieves it if FDR < FNR.
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Proof overview
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For lower bounds:

7 m Challenge: Need uniform control over all thresholds
Aaditya m ldea: Reduce to data-oblivious procedures with

Ramdas

Vichael | deterministic thresholds

m Construct optimal data-oblivious threshold
m Show it's about as good as the best data-aware threshold

For optimality guarantees:

m Challenge: BH/BC thresholds are complicated functions
of inputs

m ldea: bound complicated thresholds by simple
data-oblivious thresholds
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We prove non-asymptotic lower+upper bounds for FDR+FNR.

We find that BH and BC procedures are actually finite-sample
minimax optimal.
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We prove non-asymptotic lower+upper bounds for FDR+FNR.
We allow the problem parameters to vary with n.

We find that BH and BC procedures are actually finite-sample
minimax optimal.

Optimal rates and tradeoffs in multiple testing (on Arxiv)
— M. Rabinovich, A. Ramdas, M. Jordan, M. Wainwright



