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More tests, more (kinds of) problems

Consider, for now, the Gaussian sequence model :
Xi ∼ N(µi , 1), most µi = 0, some µi = µ > 0.

Detection. Is there at least one signal?

Localization. Which observations correspond to signals?

Estimation. What are the values of these signals?
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Natural notions of error

Detection.
Type-I error (level) for global null
Power against sparse alternatives (eg: higher criticism)

Localization.
FDR: proportion of wrong rejections (this work)
False non-discovery rate (FNR): proportion of missed
signals (this work)
Another option for future work — FWER.
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What kind of model?

1

2

3

4

signals
nulls
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What kind of model?

1

2

3

signals
nulls

Signal can be weaker
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What kind of model?

1
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4

5

signals
nulls

...or stronger
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What kind of model?

1

2

3

signals
nulls

Signals can be more sparse
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What kind of model?

1

2

3

4

signals
nulls

...or less sparse
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Sparse (generalized) Gaussians model

Sparsity. #signals = n1−β � n, 0 < β < 1.

Distributions. Tails ∼ exp
(
− |x |

γ

γ

)
, γ ≥ 1

γ = 2 =⇒ Gaussian-like tails (this talk)

Signal strength. Signals shifted positively by

µn =
(
γr log n

)1/γ

=
√

2r log n (this talk)

Rate depends on four parameters : n (#signals),
β (sparsity level), r (signal strength), γ (tail decay)
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Why this parameterization?

µ

2

3

µ = 0.75

signals
nulls

Constant µ — undetectable
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Why this parameterization?

1

2

µ

5

6

µ =
√

2 · 1 · log n

signals
nulls

µ ∼ √2 · 1 · log n — easy
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Why this parameterization?

µ

3

4

µ =
√

2 · 0.25 · log n

signals
nulls

µ ∼ √2 · r · log n, 0 < r < 1 — “right” parameterization
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Why this parameterization?

1

µ

4

5
µ =
√

2 · 0.5 · log n

signals
nulls

µ ∼ √2 · r · log n, 0 < r < 1 — “right” parameterization
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Known results (Detection)

Feasible region:

r >

{
β − 1

2 if 1
2 < β ≤ 3

4 ,(
1−√1− β

)2
if 3

4 < β < 1.

Higher-criticism (HC) thresholding asymptotically
consistent (?) for detection.
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Known results (localization)

Combined FDR + FNR : Castro and Chen (?)

r > β, known algorithms asymptotically consistent
r < β, no algorithm can be consistent

Complementary work: asymptotic Bayes optimality under
sparsity (ABOS) (??)

Weighted probability of false positive + false negative by
Bogdan-Chakrabarti-Fromelet-Ghosh
Bayes classification risk by Neuvial-Roquain

Complementary work: asymptotic minimax optimality of
BH-derived thresholding (?)

In the estimation context, for denoising an
approximately-sparse high-dimensional vector, by
Abramovich-Benjamini-Donoho-Johnstone.
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The open problems

FDR-FNR tradeoff (non-asymptotic, finite sample)

Minimax rates for FDR + FNR

Finite-sample optimality of known procedures

We resolve all three.
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FDR-FNR tradeoff

Theorem

The following trade-off holds must necessarily hold for all
threshold-based multiple testing procedures:

FDR . n−κ =⇒ FNR & n−Dγ

(
β+κ, r

)
.

γ-“distance”: Dγ
(
a, b

)
=
∣∣b1/γ − a1/γ

∣∣γ =
(√

b −√a
)2

Rate depends on four parameters : n (#signals),
β (sparsity level), r (signal strength), γ (tail decay)
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Optimal FDR + FNR scaling

Corollary

Any threshold-based multiple testing procedure must satisfy:

FDR + FNR & n−κ∗ ,

where κ∗ is the unique solution to the fixed point equation

κ = Dγ
(
β + κ, r

)
.

Rate depends on four parameters : n (#signals),
β (sparsity level), r (signal strength), γ (tail decay)

Explicitly — γ = 2 =⇒ κ∗ = 1
r

( r−β
2

)2
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Known procedures

Reject based on threshold:

tn
(
X1, . . . ,Xn

)
= min

{
t ∈

{
X1, . . . ,Xn

}
: F̂DP

(
t
)
≤ qn

}
Two popular choices:

F̂DP
BH

(t
)

=
P0

(
X ≥ t

)
#
(
Xi ≥ t

)
/n

F̂DP
BC(

t
)

=

[
#
(
Xi ≤ −t

)
+ 1
]
/n

#
(
Xi ≥ t

)
/n

Barber-Candès (BC) works if P0 unknown but
symmetric (??)
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Optimality guarantee

Theorem

BH and BC with target FDR ∝ n−κ satisfy:

BH: FDR . n−κ and FNR . n−Dγ

(
β+κ, r

)
BC: FDR . n−κ and FNR . max

{
n−κ, n−Dγ

(
β+κ, r

)}
.

BH always achieves the optimal tradeoff.
BC achieves it if FDR ≤ FNR.
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Bound vs. reality for BH
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Proof overview

For lower bounds:

Challenge: Need uniform control over all thresholds

Idea: Reduce to data-oblivious procedures with
deterministic thresholds

Construct optimal data-oblivious threshold
Show it’s about as good as the best data-aware threshold

For optimality guarantees:

Challenge: BH/BC thresholds are complicated functions
of inputs

Idea: bound complicated thresholds by simple
data-oblivious thresholds



Optimal Rates
and Tradeoffs

in Multiple
Testing

Maxim
Rabinovich,

Aaditya
Ramdas,
Michael I.

Jordan,
Martin J.

Wainwright

Summary

We prove non-asymptotic lower+upper bounds for FDR+FNR.

We allow the problem parameters to vary with n.

We find that BH and BC procedures are actually finite-sample
minimax optimal.

Optimal rates and tradeoffs in multiple testing (on Arxiv)
— M. Rabinovich, A. Ramdas, M. Jordan, M. Wainwright
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