Multi-Stage Designs controlling the False Discovery or the Family Wise Error Rate			
Sonja Zehe	tmayer Peter Baue	er Martin Posch	
	Section of Medical Stati Medical University of Vie	stics enna	
Sup	oported by FWF-Fund Nr. P	18698-n15	
Mul	Itiple Comparison Pr Vienna 2007	rocedures	
Zahatmayor Davar Daash (IMO)	Multi Charle Designe	 ・ ・	
	Mativation	WICF 07 1/23	
Motivation	Motivation		

• In gene disease association studies genetic markers (DNA sequences or genes) are searched which predict the effect of a therapy, the occurrence of a disease, ...

Limitations

- Very large number of candidate markers
- Only a very small number of markers have an influence

CONSTRAINT

• Not the number of patients is limited but the total costs or the total number of gene evaluations

Motivation

Consider a gene-disease association study with

- $m_1 = 5000$ hypotheses tests (candidate genes)
- limited resources of N = 40000 overall gene evaluations (total costs)

 $H_{0i}: \mu = 0$ versus $H_{1i}: \mu > 0$ $i = 1, ..., m_1$

Single-stage design - Example

Distribute 40000 observations equally among the hypotheses \Rightarrow 40000/5000 = 8 observations per hypothesis test

			•			D 2 (?	
	Zehetmayer, Bauer, Posch (IMS)	Multi-Stag	e Designs	MC	P 07	3 / 23	
Ī		Motivation	Single-stage design				
	Control of the Fan	nilv Wise	Error Rate	e (FWE)			

Definition

The probability of at least one Type I error among all m_1 hypotheses of an experiment.

Bonferroni adjustment - Example

- N = 40000, $m_1 = 5000$, 8 observations per hypothesis test
- For $\alpha = 0.05$: $\alpha/m_1 = 0.00001$
- Effect size $\Delta/\sigma = 0.5$
- *Power* = 0.0022

500

Motivation Single-stage design

Control of the False Discovery Rate (FDR)

$$FDR = E(\frac{V}{max\{R,1\}})$$

 $V \dots$ number of erroneously rejected hypotheses $R \dots$ number of rejected hypotheses

e.g., Benjamini and Hochberg (1995)

		•	□▶◀@▶◀ॿ	≣ ► ◄ ≣ ►	臣	~ ~ ~	
Zehetmayer, Bauer, Posch (IMS)	Multi-Stage	e Designs		MCP	07	5 / 23	
	Madissatian	Qia ala stara da sira					
	Motivation	Single-stage design					

Storey's procedure to control the FDR at level $\boldsymbol{\alpha}$

- *m*₁ hypothesis tests
- Reject all hypotheses whose p-value p_i satisfies

$$p_i \leq \gamma$$
,

• where γ is the largest real number satisfying

$$\widehat{FDR}_{\gamma}(p_1,\ldots,p_{m_1}) = \frac{\gamma \,\hat{\pi}_0 m_1}{\max(\#\{p_i \leq \gamma\},1)} \leq \alpha$$

and

 $\#\{p_i \leq \gamma\}$... number of p-values not exceeding γ $\hat{\pi}_0$... estimate of proportion of true H_0 based on the p_i

MCP 07 6/

< □ ▶ < □ ▶

୬ ୯.୯ 6 / 23

Controlling the False Discovery Rate (Storey 2002)

Storey, Taylor and Siegmund (2004)

This procedure controls the FDR if the p-values corresponding to the true null hypotheses are independent and uniformly distributed.

FDR - Example

- N = 40000, $m_1 = 5000$, 8 observations per hypothesis test
- $\alpha = 0.05$
- Effect size $\Delta/\sigma = 0.5$

FWE: *Power* = 0.0022

FDR: *Power* = 0.0025

			<□▶ <@▶ <≣	▶ ▲ ≣ ▶ □ ≣	$\mathcal{O}\mathcal{Q}$	
Zehetmayer, Bauer, Posch (IMS)	Multi-Stag	e Designs		MCP 07	7 / 23	
	Multi-stage designs	The procedure				
Multi-etado docia	n					

Multi-stage design

Design Constraint for gene-disease association studies

• Not the number of patients is limited but the total costs represented by the total number of gene evaluations.

E.g., Satagopan et al. (2002), Zehetmayer et al. (2005): Two-stage designs

We investigate

- increasing the number of stages (general framework)
- FWE versus FDR
- asymptotic optimal designs

590

< □ ▶ < □ ▶

	Multi-stage designs	The integrated design			
The integrated de	sign				
The sequential n-valu	IA				
At the end of the trial					
At the end of the trial -	eitner after				
 early acceptance 					
 or reaching the final stage 					
	aislaye				
an overall sequential p	-value based	d on a monotonic ordering can be			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
• Of reaching the line an overall sequential per calculated for each hyp	-value based oothesis (Tsia	d on a monotonic ordering can be atis et al, 1984).			
• Of reaching the line an overall sequential p- calculated for each hyp	-value based oothesis (Tsia Multi-Stag	d on a monotonic ordering can be atis et al, 1984).			

Property for random sample sizes

The sequential p-values p_i^s of the integrated multi-stage design with random stage-wise per-hypothesis sample sizes are

- independent and
- uniformly distributed

under the null hypothesis (when the observations are independent).

REMARK

For the proof the γ_i are specified via a futility spending function.

≣≯

500

< □ ► < @ ►

< Ξ

Asymptotic optimal designs

Optimization

- For given N, π_0 , Δ/σ and α we optimize the probability to reject an alternative with respect to the parameters
 - r_1, \ldots, r_k (fraction of total number of observation N for stage $1, \ldots, k$
 - $\gamma_1, \ldots, \gamma_{k-1}$ (selection boundaries)
- letting $m_1 \to \infty$ and assuming $N = dm_1$ for d > 0,
- The optimal power and optimal parameters depend on N, m₁, and Δ/σ only via $\sqrt{N/m_1}\Delta/\sigma$.

Asymptotic optimal designs - FDR

Three-stage design - Asymptotic optimal parameters

- N = 40000 overall observations
- $m_1 = 5000$ hypotheses
- *α* = 0.05

Consider we are planning an experiment with three stages for $\Delta/\sigma = 0.5$ and $\pi_0 = 0.99$.

Asymptotic optimal designs - Miss-specification

Difference between optimal power (if trial was planned based on actual values) and non-optimal power if Δ/σ was miss-specified?

Asymptotic optimal designs - Miss-specification

Difference between optimal power (if trial was planned based on actual values) and non-optimal power if π_0 was miss-specified?

The pilot design

Procedure

- at each interim analysis, the p-value is computed using the observations from the preceding stage only
- The hypothesis tests are performed with the last stage data only

Error rates

- FWE: $\gamma_k = \frac{\alpha}{m_k}$
- FDR:
 - the stages can be considered as single-stage designs
 - the procedure by Storey for independent p-values can be applied
 - $\widehat{FDR}_{\gamma_k}(p_{1k},\ldots,p_{m_kk})$

◆ロト ◆ 昂 ▶ ▲ 直 ▶ ▲ 直 か へ で MCP 07 20 / 23

Pilot design controlling the FDR

- Multi-stage designs are strikingly superior to single-stage designs
- even when in the simple pilot design only the last stage data is used for the final test decision

The crucial point is not

- the choice of the error rate FWE versus FDR
- the type of design integrated or pilot

but skipping non-promising hypotheses in early phases of the experiment!

Under miss-specification:

integrated design controlling the FDR seems to be the best choice

5900

	References
Se	lected References
	Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. <i>J. R. Statist. Soc. B</i> , 57, 289-300.
	Satagopan,JM, et al. (2002) Two-stage designs for gene-disease association studies. <i>Biometrics</i> , 58 , 163-170.
	Storey, JD, Taylor, JE, Siegmund, D (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. <i>J. R. Statist. Soc. B</i> , 66, 187-205.
	Tsiatis,AA, Rosner,GL, Mehta,CR (1984) Exact confidence intervals following a group sequential test, <i>Biometrics</i> , 40, 797-804.
	Zehetmayer, S, Bauer, P, Posch, M (2005) Two-stage designs for experiments with a large number of hypotheses, <i>Bioinformatics</i> , 21, 3771-3777.
	Zehetmayer,S, Bauer,P, Posch,M (2007) Optimized multi-stage designs controlling the FDR or the FWE. Submitted.

Zehetmayer, Bauer, Posch (IMS)

Multi-Stage Designs

MCP 07 23 / 23