On Identification of Inferior Treatments Using the Newman-Keuls Procedure

Samuel S. Wu University of Florida Malcom Randall VA Medical Center Tianjin University of Finance and Economics

Joint work with Weizhen Wang and David Annis July, 2007

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Outline

1 Various Selection Procedures

1 NK-procedure Controls FWE for Simultaneous Tests in N

3 Some Simulation Results on Relative Efficiencies

< □ > < □ > < □ > .

Selection of the Best Population

- Indifference-zone approach (Bechhofer, 1954)
- Subset selection formulation (Gupta, 1956)
- Two-stage and sequential procedures

(see Bechhofer, Santner, and Goldsman, 1995; Kim and Nelson, 2001; Chen and Kelton, 2005)

• These procedures select ONE of the best

With multiple best populations, these procedures do not control the probability of including ALL best treatments.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Selection of ALL Best Population

- Singe-step test by Lam (1986)
- Unconstrained Multiple Comparison with the Best (UMCB) by Edward and Hsu (1983)
- Step-down procedure by Broström (1981) and Finner and Giani (1994)
- Acceptance set approach by Hayter (2007)
- Newman-Keuls (NK) procedure (restricted to MCB)

・ロ・・ (日・・ 日・・ 日・・

Balanced One-Way Layout Model with k Treatments

Independent samples

$$X_{ij} \sim N(\mu_i, \sigma^2), \ 1 \le i \le k, 1 \le j \le n$$
(1)

- Mean estimates $\hat{\mu}_i$
- Variance estimate $\hat{\sigma}^2 \sim \sigma^2 \chi_{\nu}^2 / \nu$, $\nu = k(n-1)$
- Studentized ordered statistics

$$Y_i = \sqrt{n}\hat{\mu}_{(i)}/\hat{\sigma}, 1 \le i \le k,$$
(2)

where (1), ..., (k) are random indices such that $Y_1 \leq Y_2 \leq \ldots \leq Y_k$.

Critical Values d, |d|, q

Suppose $Z_i \sim N(0,1)$ and $U \sim \sqrt{\chi_{\nu}^2/\nu}$ are independent. For any given α and ν , we define critical values:

d_{k-1} as used in Dunnett's one-sided MCC method

$$P(\max_{1 \le i \le k-1} Z_i - Z_k \le d_{k-1}U) = 1 - \alpha$$
 (3)

|d|_{k-1} as used in Dunnett's two-sided MCC method

$$P(\max_{1 \le i \le k-1} |Z_i - Z_k| \le |d|_{k-1}U) = 1 - \alpha$$
(4)

qk as used in Tukey's MCA method

$$P(\max_{1 \le i,j \le k} |Z_i - Z_j| \le q_k U) = 1 - \alpha$$
(5)

• Note that $d_{k-1} < |d|_{k-1} < q_k < q_{k+1}$

Critical Values (c, w)

Suppose $Z_i \sim N(0, 1)$ and $U \sim \sqrt{\chi_{\nu}^2/\nu}$ are independent.

• For the BFG method $c_{k,k} = q_k$ and $c_{k,r}$ are defined by

$$P\left(\begin{array}{c}\max_{1\leq a\leq k-r}Z_a-\min_{k-r+1\leq b\leq k}Z_b\leq c_{k,r}U\\\max_{k-r+1\leq i,j\leq k}|Z_i-Z_j|\leq c_{k,r}U\end{array}\right)=1-\alpha$$

• For the Hayter method, $w_{k,k} = q_k$ and $w_{k,r}$ are iteratively defined by

$$P\left(\begin{array}{c}\max_{1\leq a\leq k-r}Z_a-\min_{k-r+1\leq b\leq k}Z_b\leq w_{k,r+1}U\\\max_{k-r+1\leq i,j\leq k}|Z_i-Z_j|\leq w_{k,r}U\end{array}\right)=1-\alpha$$

• $q_r < w_{k,r} \stackrel{?}{<} c_{k,r} < q_k$; $\stackrel{?}{<}$ holds when $w_{k,2} \leq \ldots \leq w_{k,k-1}$

Single Step Procedures

• Gupta (1956), Hsu (1984) CMCB

$$I = \{i : Y_i < Y_k - d_{k-1}\}$$
(6)

Lam (1986)

$$I = \{i : Y_i < Y_k - q_k\}$$
(7)

• Edward and Hsu (1983) UMCB

$$G = \{Y_j : Y_j > Y_k - |d|_{k-1}\}$$

$$I = \{i : Y_i < \min G - |d|_{k-1}\}$$
(8)

:

A General Description of Step-down Procedures

- Step 1 Start with $T_k = Y_k Y_1$. If $T_k \le t_k$, then conclude that there is no inferior treatment and stop; otherwise, conclude that Y_1 is inferior and go to step 2.
- Step 2 If $T_{k-1} = Y_k Y_2 \le t_{k-1}$, then stop; otherwise, conclude that Y_1, Y_2 are inferior and go to step 3.

Step k-1 If $T_2 \le t_2$, then conclude that Y_1, \ldots, Y_{k-2} are inferior; otherwise, conclude that Y_1, \ldots, Y_{k-1} are inferior.

$$Y_1 \le Y_2 \le \ldots \le Y_{k-2} \le \underline{Y_{k-1} \le Y_k}$$

Three Step-down Procedures

- Broström (1981) and Finner and Giani (1994): $t_r = c_{k,r}$
- Hayter (2007): $t_r = w_{k,r}$
- Newman-Keuls (NK): $t_r = q_r$
- $BFG \prec Hayter \prec NK$

A Monotone Property

- Let N be the number of μ_i 's being largest (wlog, 0)
- Hypotheses: $H_{0,r}: N \ge r$ vs $H_{A,r}: N \le r-1$

Theorem

For any $2 \le r \le k$, $T_r = Y_k - Y_{k-r+1}$ is stochastically largest at $\underline{\mu}_r = (-\infty, \cdots, -\infty, 0, \cdots, 0,)$ (with *r* zero means) among $H_{0,r}$. Hence, the rejection region $\{T_r > q_r\}$ is a level- α test.

$Y_1 \le Y_2 \le \ldots \le Y_{k-r} \le \underline{Y_{k-r+1} \le \ldots \le Y_k}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Strong Control of FWE

• To simultaneously test $\mathcal{B} = \{H_{0,r} : 2 \le r \le k\}$

• Assert
$$H_{A,r}$$
 if $\bigcap_{j=r}^k \{T_j = Y_k - Y_{k-j+1} > q_j\}$ occurs

$$Y_1 \leq Y_2 \leq \ldots \leq Y_{k-r} \leq \underline{Y_{k-r+1} \leq \ldots Y_k}$$

Theorem

The familywise error is controlled in the strong sense. More specifically, if $N(\mu) \ge r + 1$, then

$$P_{\underline{\mu}}(assert N \leq r) \leq \alpha.$$

(9)

1

ヘロア 人間 アメヨア メヨア

Sketch Proof of the Monotone Property

- Idea: stochastic ordering of random vector $(Y_{k-r+1}, -T_r)$ condition on $\hat{\sigma}$ (Kamae, krengel, and O'Brien, 1977)
- Let p(u, v) and q(u, v) be the distribution of $(Y_{k-r+1}, -T_r)$ condition on $\hat{\sigma}$ at $\underline{\mu}_r$ and at $\underline{\mu} \in H_{0,r}$, respectively.
- Fact 1: Marginal distributions satisfy $p_1(u) \prec q_1(u)$
- Fact 2: Conditional distributions satisfy

$$p(v|u) \prec p(v|u') \prec q(v|u'), \ \forall u \le u'$$
(10)

(日)

• Therefore, $p(u, v) \prec q(u, v)$

Some Toy Examples with k = 3

Table: Inferior treatments identified

		Sample means				
Procedures	Cutoffs	(0, 1, 4)	(0, 1.2, 4)	(0, 3.2, 3.3)		
Gupta	$d_2 = 2.710$	$\{1, 2\}$	$\{1,2\}$	{1}		
EH	$ d _2 = 3.128$	Ø	Ø	{1}		
Lam	$q_3 = 3.314$	$\{1\}$	$\{1\}$	Ø		
BFG	$c_{3,2} = 3.105$	$\{1\}$	$\{1\}$	Ø		
Hayter	$w_{3,2} = 2.968$	$\{1,2\}$	{1}	Ø		
NK	$q_2 = 2.772$	$\{1,2\}$	$\{1,2\}$	Ø		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

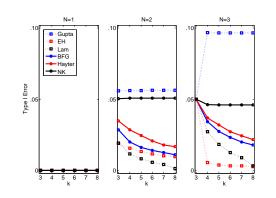
Simulation Setup

- k = 3, ..., 8
- *N* = 1, 2, 3
- $\sigma = 1$ known
- Inferior treatments equally spaced with maximum mean difference of 0.8
- Compare sample sizes needed so that

P(Complete Correct Selection) = 0.8

ヘロト ヘヨト ヘヨト ヘヨト

Comparison of Type I Error Rate

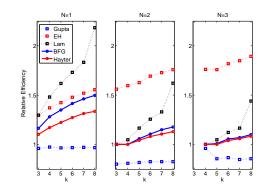


• $\alpha \approx 0$ when N=1

Gupta > NK > Hayter > BFG > (EH, Lam)

・ロ・ ・ 四・ ・ 回・ ・ 回・

Relative Efficiencies of the NK Procedure



- Gupta > NK > Hayter > BFG > (EH, Lam)
- NK vs Hayter: $\approx 130\%, 115\%, 110\%$ for k=8

<回><モン<

<br

Possible Future Works

- Unbalance one-way layout
- ANCOVA, sample means with known dependent cov
- Group sequential setting
- Step-up tests for MCB

・ロ・ ・ 四・ ・ 回・ ・ 日・

It Is Great To Be Florida Gators

・ロト ・ 四ト ・ ヨト ・ ヨト

크

Detailed Sample Sizes

Table: Sample sizes so that P(Complete Correct Selection) = 0.8

Ν	Procedures	k=3	k=4	k=5	k=6	k=7	k=8
1	Gupta	94	215	381	595	860	1167
	EH	127	303	562	909	1344	1875
	Lam	127	327	639	1065	1621	2632
	BFG	114	283	533	870	1294	1807
	Hayter	108	259	483	782	1163	1612
	NK	98	221	395	615	885	1206
2	Gupta	20	84	192	343	537	773
	EH	39	166	382	704	1123	1650
	Lam	25	109	274	523	865	1520
	BFG	25	104	249	460	747	1103
	Hayter	25	104	245	449	718	1060
	NK	25	104	235	416	650	938
3	Gupta	1	24	88	200	352	552
	EH	1	44	181	420	767	1221
	Lam	1	25	108	259	484	929
	BFG	1	25	104	244	444	709
	Hayter	1	25	103	240	439	699
	NK	1	25	103	231	415	645

Sam Wu

MCB Using NK Procedure

・ロ・ ・ 四・ ・ 回・ ・ 日・