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Problem Formulation

General Set-Up & Notation

@ Data X = (Xj,...,Xn) from distribution P

@ Interest in parameter vector 6(P) =6 = (04,...,6s)’

@ The individual hypotheses concern the elements 6;,
fori=1,...,s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:
Hi: 6 <6 Vs. Hili 6, > 6

Two-sided hypotheses:
Hi: 6 = 6p; VS. HII 6; 75 90_]
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General Set-Up & Notation

@ Data X = (Xj,...,Xn) from distribution P
@ Interest in parameter vector 6(P) =6 = (04,...,6s)’
@ The individual hypotheses concern the elements 6;,
fori=1,...,s, and can be (all) one-sided or (all) two-sided
One-sided hypotheses:
Hi: 6 <6 Vs. Hili 6, > 6
Two-sided hypotheses:
Hi: 6 = 6p; VS. HII 6; 75 90_]

@ Test statistic Tnj = (6nj — 60.)/6ni OF Tni=|6ni—60il/6ni
@ 6, is a standard error for B, or 6hi=1/vn
@ Py is an individual p-value
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The False Discovery Rate

Consider s individual tests H; vs. H/.

False discovery proportion
F = # false rejections; R = # total rejections

F

F

False discovery rate
@ FDRp = Ep(FDP)
Goal: (strong) asymptotic control of the FDR at level «:

limsupFDRp < a for all P

n—oo
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Existing Methods

Benjamini and Hochberg (1995)

Stepup method:
@ Letj* =max{j: Py < 0o}, where oj =ja/s
@ Reject H(y),...,Hv

Comments:
@ Original proof assumes independence of p-values

@ Validity has been extended to certain dependence types
(Benjamini and Yekutieli, 2001)




Existing Methods

Modifications of BH (1995)

Benjamini and Yekutieli (2001):
@ Instead of oy =jo/s use o =jar/(s-Cs) with Cs = 35_; %
@ Works under arbitrary dependence
@ But can be very conservative, since Cs ~ log(s) + 0.5




Existing Methods

Modifications of BH (1995)

Benjamini and Yekutieli (2001):
@ Instead of oy =jo/s use o =jar/(s-Cs) with Cs = 35_; %
@ Works under arbitrary dependence
@ But can be very conservative, since Cs ~ log(s) + 0.5

Storey, Taylor and Siegmund (2004):
@ Under sufficient conditions for BH (2005):

FDRp < SS—Oa where s = |I(P)| = #{true hypotheses}

@ Instead of o =jo /s use o =ja /S with

N #{Pn; > A}

Sp = forsome0<A <1
0 1-1 <<

@ Requires the py; to be ‘almost independent’
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New Method

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values cq,...,Cs:

FDRp = Ep [mx'{le}} =5 %EP[F]R:r]P{R:r}

1<r<s
with P{R = r} = P{Tm(s) >Cs,... ,Tnﬂ(S,rJrl) > Cs—r+17Tn,(sfr) < Cs—r}




New Method

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values cq,...,Cs:

F 1
FDRp = Ep {} = ZEp[FIR=r]P{R =r}
max{R,1} 1ng5 r

with P{R =1} =P{Tp (5) > Cs,---, Tn(s—r41) = Cs—r+1, Tn(s—r) < Cs—r}

If all false hypotheses are rejected with p. — 1, then with p. — 1

r-s+sp

FDRp = :

S—Sp+1<r<s

XP{Tn.sozso > Csps--s Tns—r+1:sy = Cs—r+1; Ins—risg < Cs—r}

(1)

Here T+ is the rth largest of the test statistics Ty 1,..., Tnyt
and we assume w.l.o.g. that I(P) ={1,...,sp}.




New Method

Basic Idea (continued)

Goal:
@ Bound (1) above by « for any P, at least asymptotically
@ In particular, this must be ensured for any 1 <sp <s.

First, consider any P such that sp = 1:
@ Then (1) reduces to 1P {T 1.1 >cq}
@ Andsoc; =inf{x eR: IP{Tn11 >x} < a}
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Next, consider any P such that s = 2. Then (1) reduces to
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Basic Idea (continued)

Goal:
@ Bound (1) above by « for any P, at least asymptotically
@ In particular, this must be ensured for any 1 <sp <s.

First, consider any P such that sp = 1:
@ Then (1) reduces to 1P {T 1.1 >cq}
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Next, consider any P such that s = 2. Then (1) reduces to
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And so forth ...



New Method

Estimation of the c;

Since P is unknown, so are the ‘ideal’ critical values c;.

We sugggest a bootstrap method to estimate the c;:
@ Py, is an unrestricted estimate of P with 6,(Pp) = 6,
@ X* is generated from P,, and the T,; are computed from X*
but centered at 6, ; rather than at 6
@ E.g., for one-sided testing: T7; = (8;; — 6h;)/6

*
n,i




New Method

Estimation of the c;

Since P is unknown, so are the ‘ideal’ critical values c;.

We sugggest a bootstrap method to estimate the c;:
@ Py, is an unrestricted estimate of P with 6,(Pp) = 6,
@ X* is generated from P,, and the T,; are computed from X*
but centered at 6, ; rather than at 6
@ E.g., for one-sided testing: T;; = (8;; — 6h)/6;;

Important detail:

@ The ordering of the original T, ; determines the ‘true’ null
hypotheses in the bootstrap world

@ The permutation {kj,...,ks} of {1,...,s} is defined such
thatTnkl_Tn(l), nks—T n,(s)

@ Then Ty, istherth smallest of the statistics T7, ..., Ty, &
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Estimation of the ¢; (continued)

Start with cq:
o & =inf{x €R: 1P (T} 4 >x}<a}
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Estimation of the ¢; (continued)

Start with cq:
o & =inf{x €R: 1P (T} 4 >x}<a}

Then move on to c,:

° 62 is the smallest x € R for which
1

2 A . n
s_ Th1o <Ci}+— P{T 222X Th1,2C0 < a
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Estimation of the ¢; (continued)

Start with cq:
o & =inf{x €R: 1P (T} 4 >x}<a}

Then move on to c,:

° 62 is the smallest x € R for which

1 2. o
n12<C1}+ Pn{T; 22>XTh1,2C )<«

S —
And so forth ...

Unlike Troendle (2000), monotonicity ;1 > €; is not enforced.
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Some Theory

Assumptions

(1) The sampling distribution of v/n(6, — 6) under P converges
to a limit distribution with continuous marginals

(2) The bootstrap consistently estimates this distribution

(3) vn6,; and \/né;; converge to the same constant
in probability (fori =1,...,s)

(4) The limiting joint distribution corresponding to the ‘true’
test statistics is exchangeable
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Some Theory

Assumptions

(1) The sampling distribution of v/n(6, — 6) under P converges
to a limit distribution with continuous marginals

(2) The bootstrap consistently estimates this distribution

(3) vn6,; and \/né;; converge to the same constant
in probability (fori =1,...,s)

(4) The limiting joint distribution corresponding to the ‘true’
test statistics is exchangeable

Theorem
(i) Any false H; will be rejected with p. -1 asn — o
(i) The method asymptotically controls the FDR at level o




Theory & Practice

Some Practice

Assumption (4) is rather restrictive.

But simulations indicate that the method appears robust to
@ different limiting variances of the ‘true’ test statistics
@ different limiting correlations of the ‘true’ test statistics

So perhaps Assumption (4) can be relaxed ...
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Simulations

Set-Up

Data generating process and testing problem:
@ l.i.d. random vectors from N(6,X)
@ 6,=00r6=0.2
@ Y has constant correlation p
@ Hi:6<0vs.H:6 >0
@ T,; is the usual t-statistic

Methods considered:
@ (BH) Benjamini and Hochberg (1995)
@ (STS) Storey et al. (2004) with A = 0.5
@ (Boot) Bootstrap method

Criteria:
@ Empirical FDR (nominal a = 10%)
@ Average number of true rejections




Simulations

Results
[ BH STS Boot| BH STS Boot |
Alg =0

Control 10.3 11.0 10.3| 45 326 10.2
Rejected | 0.0 00 00| 00 00 0.0
Ten 6, =0.2
Control 80 102 79| 46 280 96
Rejected | 34 39 34| 37 46 59
Twenty five 6, = 0.2

Control 50 104 63| 3.8 193 96
Rejected | 13.2 17.8 14.4 | 127 144 165
All g =0.2
Control 00 00 00| 00 00 o000
Rejected | 34.7 499 473|319 475 36.3
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