Resampling-Based Control of the FDR

Joseph P. Romano¹ Azeem S. Shaikh² and Michael Wolf³

¹Department of Statistics Stanford University

²Department of Economics University of Chicago

³Institute for Empirical Research in Economics University of Zurich

Problem Formulation	Existing Methods	New Method	Theory & Practice	Simulations
Outline				

- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

・ロット (雪) (日) (日)

Problem Formulation	Existing Methods	New Method	Theory & Practice	Simulations
Outline				

- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

5 Simulations

General Set-Up & Notation

- Data $X = (X_1, \ldots, X_n)$ from distribution P
- Interest in parameter vector $\theta(P) = \theta = (\theta_1, \dots, \theta_s)'$
- The individual hypotheses concern the elements θ_i, for i = 1,..., s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:

$$H_i: heta_i \leq heta_{0,i}$$
 vs. $H'_i: heta_i > heta_{0,i}$

Two-sided hypotheses:

$$H_i: \theta_i = \theta_{0,i}$$
 vs. $H'_i: \theta_i \neq \theta_{0,i}$

General Set-Up & Notation

- Data $X = (X_1, \ldots, X_n)$ from distribution *P*
- Interest in parameter vector $\theta(P) = \theta = (\theta_1, \dots, \theta_s)'$
- The individual hypotheses concern the elements θ_i, for i = 1,..., s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:

$$H_i: \theta_i \leq \theta_{0,i}$$
 vs. $H'_i: \theta_i > \theta_{0,i}$

Two-sided hypotheses:

$$H_i: \theta_i = \theta_{0,i}$$
 vs. $H'_i: \theta_i \neq \theta_{0,i}$

• Test statistic $T_{n,i} = (\hat{\theta}_{n,i} - \theta_{0,i})/\hat{\sigma}_{n,i}$ or $T_{n,i} = |\hat{\theta}_{n,i} - \theta_{0,i}|/\hat{\sigma}_{n,i}$ • $\hat{\sigma}_{n,i}$ is a standard error for $\hat{\theta}_{n,i}$ or $\hat{\sigma}_{n,i} \equiv 1/\sqrt{n}$ • $\hat{p}_{n,i}$ is an individual *p*-value New Method

(日)

The False Discovery Rate

Consider *s* individual tests H_i vs. H'_i .

False discovery proportion

F = # false rejections; R = # total rejections

$$FDP = \frac{F}{R} 1\{R > 0\} = \frac{F}{\max\{R, 1\}}$$

False discovery rate

• $FDR_P = E_P(FDP)$

Goal: (strong) asymptotic control of the FDR at level α :

$$\limsup_{n \to \infty} \mathsf{FDR}_{P} \leq \alpha \quad \text{for all } P$$

- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

5 Simulations

(日)

A D > A B > A B > A B >

Benjamini and Hochberg (1995)

Stepup method:

- Let $j^* = \max\left\{j : \hat{p}_{n,(j)} \le \alpha_j\right\}$, where $\alpha_j = j\alpha/s$
- Reject *H*₍₁₎,...,*H*_(j*)

Comments:

- Original proof assumes independence of p-values
- Validity has been extended to certain dependence types (Benjamini and Yekutieli, 2001)

Modifications of BH (1995)

Benjamini and Yekutieli (2001):

- Instead of $\alpha_j = j\alpha/s$ use $\alpha_j = j\alpha/(s \cdot C_s)$ with $C_s = \sum_{r=1}^s \frac{1}{r}$
- Works under arbitrary dependence
- But can be very conservative, since $C_s \approx \log(s) + 0.5$

Modifications of BH (1995)

Benjamini and Yekutieli (2001):

- Instead of $\alpha_j = j\alpha/s$ use $\alpha_j = j\alpha/(s \cdot C_s)$ with $C_s = \sum_{r=1}^s \frac{1}{r}$
- Works under arbitrary dependence
- But can be very conservative, since $C_s \approx \log(s) + 0.5$

Storey, Taylor and Siegmund (2004):

• Under sufficient conditions for BH (2005):

$$FDR_P \leq \frac{s_0}{s} \alpha$$
 where $s_0 = |I(P)| = \#\{true \text{ hypotheses}\}$

• Instead of $\alpha_j = j\alpha/s$ use $\alpha_j = j\alpha/\hat{s}_0$ with

$$\hat{s}_0 = rac{\#\{\hat{oldsymbol{
ho}}_{n,i} > \lambda\}}{1-\lambda} \quad ext{for some } 0 < \lambda < 1$$

• Requires the $\hat{p}_{n,i}$ to be 'almost independent'

Problem Formulation	Existing Methods	New Method	Theory & Practice	Simulations
Outline				

- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

5 Simulations

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values c_1, \ldots, c_s :

$$\mathsf{FDR}_{P} = \mathsf{E}_{P}\left[\frac{F}{\max\{R,1\}}\right] = \sum_{1 \le r \le s} \frac{1}{r} \mathsf{E}_{P}[F|R=r]P\{R=r\}$$

with $P\{R=r\} = P\{T_{n,(s)} \ge c_{s}, \dots, T_{n,(s-r+1)} \ge c_{s-r+1}, T_{n,(s-r)} < c_{s-r}\}$

(日)

Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values c_1, \ldots, c_s :

$$\mathsf{FDR}_{P} = \mathsf{E}_{P}\left[\frac{F}{\max\{R,1\}}\right] = \sum_{1 \le r \le s} \frac{1}{r} \mathsf{E}_{P}[F|R=r]P\{R=r\}$$

with $P\{R=r\} = P\{T_{n,(s)} \ge c_{s}, \dots, T_{n,(s-r+1)} \ge c_{s-r+1}, T_{n,(s-r)} < c_{s-r}\}$

If all false hypotheses are rejected with $p. \rightarrow 1$, then with $p. \rightarrow 1$

$$FDR_{P} = \sum_{s-s_{0}+1 \le r \le s} \frac{r-s+s_{0}}{r}$$
(1)
× $P\{T_{n,s_{0}:s_{0}} \ge c_{s_{0}}, \dots, T_{n,s-r+1:s_{0}} \ge c_{s-r+1}, T_{n,s-r:s_{0}} < c_{s-r}\}$

Here $T_{n,r:t}$ is the *r*th largest of the test statistics $T_{n,1}, \ldots, T_{n,t}$ and we assume w.l.o.g. that $I(P) = \{1, \ldots, s_0\}$.

・ロット (雪) (日) (日)

Goal:

- Bound (1) above by α for any *P*, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any *P* such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s} P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbf{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

A D > A P > A D > A D >

Goal:

- Bound (1) above by α for any *P*, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any *P* such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s} P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbf{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

Next, consider any *P* such that $s_0 = 2$. Then (1) reduces to

- $\frac{1}{s-1}P\{T_{n,2:2} \ge c_2, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge c_2, T_{n,1:2} \ge c_1\}$
- And so c_2 is the smallest $x \in \mathbf{R}$ for which $\frac{1}{s-1}P\{T_{n,2:2} \ge x, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge x, T_{n,1:2} \ge c_1\} \le \alpha$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Goal:

- Bound (1) above by α for any *P*, at least asymptotically
- In particular, this must be ensured for any $1 \le s_0 \le s$.

First, consider any *P* such that $s_0 = 1$:

- Then (1) reduces to $\frac{1}{s} P\{T_{n,1:1} \ge c_1\}$
- And so $c_1 = \inf\{x \in \mathbf{R} : \frac{1}{s} P\{T_{n,1:1} \ge x\} \le \alpha\}$

Next, consider any *P* such that $s_0 = 2$. Then (1) reduces to

- $\frac{1}{s-1}P\{T_{n,2:2} \ge c_2, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge c_2, T_{n,1:2} \ge c_1\}$
- And so c_2 is the smallest $x \in \mathbf{R}$ for which $\frac{1}{s-1}P\{T_{n,2:2} \ge x, T_{n,1:2} < c_1\} + \frac{2}{s}P\{T_{n,2:2} \ge x, T_{n,1:2} \ge c_1\} \le \alpha$

And so forth ...

Estimation of the c_i

Since P is unknown, so are the 'ideal' critical values c_i .

We suggest a bootstrap method to estimate the c_i :

- \hat{P}_n is an *unrestricted* estimate of *P* with $\theta_i(\hat{P}_n) = \hat{\theta}_{n,i}$
- X^* is generated from \hat{P}_n and the $T^*_{n,i}$ are computed from X^* but centered at $\hat{\theta}_{ni}$ rather than at θ_{0i}
- E.g., for one-sided testing: $T_{n,i}^* = (\hat{\theta}_{n,i}^* \hat{\theta}_{n,i}) / \hat{\sigma}_{n,i}^*$

(日)

Estimation of the c_i

Since *P* is unknown, so are the 'ideal' critical values c_i .

We sugggest a bootstrap method to estimate the c_i :

- \hat{P}_n is an *unrestricted* estimate of *P* with $\theta_i(\hat{P}_n) = \hat{\theta}_{n,i}$
- X* is generated from P̂_n and the T^{*}_{n,i} are computed from X* but centered at θ̂_{n,i} rather than at θ_{0,i}
- E.g., for one-sided testing: $T_{n,i}^* = (\hat{\theta}_{n,i}^* \hat{\theta}_{n,i}) / \hat{\sigma}_{n,i}^*$

Important detail:

- The ordering of the original *T_{n,i}* determines the 'true' null hypotheses in the bootstrap world
- The permutation $\{k_1, \ldots, k_s\}$ of $\{1, \ldots, s\}$ is defined such that $T_{n,k_1} = T_{n,(1)}, \ldots, T_{n,k_s} = T_{n,(s)}$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Then $T_{n,r:t}^*$ is the *r*th smallest of the statistics $T_{n,k_1}^*, \ldots, T_{n,k_t}^*$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Estimation of the c_i (continued)

Start with c_1 :

• $\hat{c}_1 = \inf\{x \in \mathbf{R} : \frac{1}{s}\hat{P}_n\{T^*_{n,1:1} \ge x\} \le \alpha\}$

Estimation of the c_i (continued)

Start with c_1 :

• $\hat{c}_1 = \inf\{x \in \mathbf{R} : \frac{1}{s}\hat{P}_n\{T^*_{n,1:1} \ge x\} \le \alpha\}$

Then move on to c_2 :

•
$$\hat{c}_2$$
 is the smallest $x \in \mathbf{R}$ for which

$$\frac{1}{s-1}\hat{P}_n\{T^*_{n,2:2} \ge x, T^*_{n,1:2} < \hat{c}_1\} + \frac{2}{s}\hat{P}_n\{T^*_{n,2:2} \ge x, T^*_{n,1:2} \ge \hat{c}_1\} \le \alpha$$

Estimation of the c_i (continued)

Start with c_1 :

•
$$\hat{c}_1 = \inf\{x \in \mathbf{R} : \frac{1}{s}\hat{P}_n\{T^*_{n,1:1} \ge x\} \le \alpha\}$$

Then move on to c_2 :

•
$$\hat{c}_2$$
 is the smallest $x \in \mathbf{R}$ for which

$$\frac{1}{s-1}\hat{P}_n\{T^*_{n,2:2} \ge x, T^*_{n,1:2} < \hat{c}_1\} + \frac{2}{s}\hat{P}_n\{T^*_{n,2:2} \ge x, T^*_{n,1:2} \ge \hat{c}_1\} \le \alpha$$

And so forth ...

Unlike Troendle (2000), monotonicity $\hat{c}_{i+1} \geq \hat{c}_i$ is not enforced.

Problem Formulation	Existing Methods	New Method	Theory & Practice	Simulations
Outline				

- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

5 Simulations

Some Theory

Assumptions

- (1) The sampling distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ under *P* converges to a limit distribution with continuous marginals
- (2) The bootstrap consistently estimates this distribution
- (3) $\sqrt{n}\hat{\sigma}_{n,i}$ and $\sqrt{n}\hat{\sigma}_{n,i}^*$ converge to the same constant in probability (for i = 1, ..., s)
- (4) The limiting joint distribution corresponding to the 'true' test statistics is exchangeable

・ロン ・ 四 と ・ 回 と ・ 回 と

Some Theory

Assumptions

- (1) The sampling distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ under *P* converges to a limit distribution with continuous marginals
- (2) The bootstrap consistently estimates this distribution
- (3) $\sqrt{n}\hat{\sigma}_{n,i}$ and $\sqrt{n}\hat{\sigma}_{n,i}^*$ converge to the same constant in probability (for i = 1, ..., s)
- (4) The limiting joint distribution corresponding to the 'true' test statistics is exchangeable

Theorem

(i) Any false H_i will be rejected with $p. \rightarrow 1$ as $n \rightarrow \infty$

(ii) The method asymptotically controls the FDR at level α

Some Practice

Assumption (4) is rather restrictive.

But simulations indicate that the method appears robust to

- different limiting variances of the 'true' test statistics
- different limiting correlations of the 'true' test statistics

So perhaps Assumption (4) can be relaxed ...

(日)

Problem Formulation	Existing Methods	New Method	Theory & Practice	Simulations
Outline				

- Problem Formulation
- 2 Existing Methods
- 3 New Method
- 4 Theory & Practice

Data generating process and testing problem:

- I.i.d. random vectors from $N(\theta, \Sigma)$
- $\theta_i = 0$ or $\theta_i = 0.2$
- Σ has constant correlation ρ
- $H_i: \theta_i \leq 0$ vs. $H'_i: \theta_i > 0$
- $T_{n,i}$ is the usual *t*-statistic

Methods considered:

- (BH) Benjamini and Hochberg (1995)
- (STS) Storey et al. (2004) with $\lambda = 0.5$
- (Boot) Bootstrap method

Criteria:

- Empirical FDR (nominal $\alpha = 10\%$)
- Average number of true rejections

(日)

Results

	ho= 0		ho= 0.9			
	BH	STS	Boot	BH	STS	Boot
$AII \ \theta_i = 0$						
Control	10.3	11.0	10.3	4.5	32.6	10.2
Rejected	0.0	0.0	0.0	0.0	0.0	0.0
		Ten	$\theta_i = 0.2$	2		
Control	8.0	10.2	7.9	4.6	28.0	9.6
Rejected	3.4	3.9	3.4	3.7	4.6	5.9
Twenty five $\theta_i = 0.2$						
Control	5.0	10.4	6.3	3.8	19.3	9.6
Rejected	13.2	17.8	14.4	12.7	14.4	16.5
$AII \ \theta_i = 0.2$						
Control	0.0	0.0	0.0	0.0	0.0	0.0
Rejected	34.7	49.9	47.3	31.9	47.5	36.3
					< □	▶ ◀ 🗗 ▶ ◀

