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General Set-Up & Notation

Data X = (X1, . . . ,Xn) from distribution P
Interest in parameter vector θ(P) = θ = (θ1, . . . ,θs)

′

The individual hypotheses concern the elements θi ,
for i = 1, . . . ,s, and can be (all) one-sided or (all) two-sided

One-sided hypotheses:

Hi : θi ≤ θ0,i vs. H ′
i : θi > θ0,i

Two-sided hypotheses:

Hi : θi = θ0,i vs. H ′
i : θi 6= θ0,i

Test statistic Tn,i = (θ̂n,i −θ0,i)/σ̂n,i or Tn,i = |θ̂n,i −θ0,i |/σ̂n,i

σ̂n,i is a standard error for θ̂n,i or σ̂n,i ≡ 1/
√

n
p̂n,i is an individual p-value
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The False Discovery Rate

Consider s individual tests Hi vs. H ′
i .

False discovery proportion

F = # false rejections; R = # total rejections

FDP =
F
R

1{R > 0}=
F

max{R,1}

False discovery rate

FDRP = EP(FDP)

Goal: (strong) asymptotic control of the FDR at level α:

limsup
n→∞

FDRP ≤ α for all P
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Benjamini and Hochberg (1995)

Stepup method:

Let j∗ = max
{

j : p̂n,(j) ≤ αj
}

, where αj = jα/s

Reject H(1), . . . ,H(j∗)

Comments:

Original proof assumes independence of p-values

Validity has been extended to certain dependence types
(Benjamini and Yekutieli, 2001)
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Modifications of BH (1995)

Benjamini and Yekutieli (2001):

Instead of αj = jα/s use αj = jα/(s ·Cs) with Cs = ∑s
r=1

1
r

Works under arbitrary dependence

But can be very conservative, since Cs ≈ log(s)+0.5

Storey, Taylor and Siegmund (2004):

Under sufficient conditions for BH (2005):

FDRP ≤
s0

s
α where s0 = |I(P)|= #{true hypotheses}

Instead of αj = jα/s use αj = jα/ŝ0 with

ŝ0 =
#{p̂n,i > λ}

1−λ
for some 0 < λ < 1

Requires the p̂n,i to be ‘almost independent’
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Basic Idea (Troendle, 2000)

For any stepdown procedure with critical values c1, . . . ,cs:

FDRP = EP

[
F

max{R,1}

]
= ∑

1≤r≤s

1
r

EP [F |R = r ]P{R = r}

with P{R = r}= P{Tn,(s) ≥ cs, . . . ,Tn,(s−r+1) ≥ cs−r+1,Tn,(s−r) < cs−r}

If all false hypotheses are rejected with p.→ 1, then with p.→ 1

FDRP = ∑
s−s0+1≤r≤s

r −s +s0

r
(1)

×P{Tn,s0:s0 ≥ cs0 , . . . ,Tn,s−r+1:s0 ≥ cs−r+1,Tn,s−r :s0 < cs−r}

Here Tn,r :t is the r th largest of the test statistics Tn,1, . . . ,Tn,t

and we assume w.l.o.g. that I(P) = {1, . . . ,s0}.
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Basic Idea (continued)

Goal:

Bound (1) above by α for any P, at least asymptotically

In particular, this must be ensured for any 1≤ s0 ≤ s.

First, consider any P such that s0 = 1:

Then (1) reduces to 1
s P{Tn,1:1 ≥ c1}

And so c1 = inf{x ∈ R : 1
s P{Tn,1:1 ≥ x} ≤ α}

Next, consider any P such that s0 = 2. Then (1) reduces to
1

s−1P{Tn,2:2 ≥ c2,Tn,1:2 < c1}+ 2
s P{Tn,2:2 ≥ c2,Tn,1:2 ≥ c1}

And so c2 is the smallest x ∈ R for which
1

s−1P{Tn,2:2 ≥ x ,Tn,1:2 < c1}+ 2
s P{Tn,2:2 ≥ x ,Tn,1:2 ≥ c1}≤α

And so forth ...
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Estimation of the ci

Since P is unknown, so are the ‘ideal’ critical values ci .

We sugggest a bootstrap method to estimate the ci :

P̂n is an unrestricted estimate of P with θi(P̂n) = θ̂n,i

X ∗ is generated from P̂n and the T ∗
n,i are computed from X ∗

but centered at θ̂n,i rather than at θ0,i

E.g., for one-sided testing: T ∗
n,i = (θ̂ ∗n,i − θ̂n,i)/σ̂∗

n,i

Important detail:

The ordering of the original Tn,i determines the ‘true’ null
hypotheses in the bootstrap world

The permutation {k1, . . . ,ks} of {1, . . . ,s} is defined such
that Tn,k1

= Tn,(1), . . . ,Tn,ks = Tn,(s)

Then T ∗
n,r :t is the r th smallest of the statistics T ∗

n,k1
, . . . ,T ∗

n,kt
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Estimation of the ci (continued)

Start with c1:

ĉ1 = inf{x ∈ R : 1
s P̂n{T ∗

n,1:1 ≥ x} ≤ α}

Then move on to c2:

ĉ2 is the smallest x ∈ R for which
1

s−1
P̂n{T ∗

n,2:2 ≥ x ,T ∗
n,1:2 < ĉ1}+

2
s

P̂n{T ∗
n,2:2 ≥ x ,T ∗

n,1:2 ≥ ĉ1} ≤ α

And so forth ...

Unlike Troendle (2000), monotonicity ĉi+1 ≥ ĉi is not enforced.
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Problem Formulation Existing Methods New Method Theory & Practice Simulations

Estimation of the ci (continued)

Start with c1:
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Some Theory

Assumptions

(1) The sampling distribution of
√

n(θ̂n−θ) under P converges
to a limit distribution with continuous marginals

(2) The bootstrap consistently estimates this distribution

(3)
√

nσ̂n,i and
√

nσ̂∗
n,i converge to the same constant

in probability (for i = 1, . . . ,s)

(4) The limiting joint distribution corresponding to the ‘true’
test statistics is exchangeable

Theorem

(i) Any false Hi will be rejected with p.→ 1 as n → ∞
(ii) The method asymptotically controls the FDR at level α
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Some Practice

Assumption (4) is rather restrictive.

But simulations indicate that the method appears robust to

different limiting variances of the ‘true’ test statistics

different limiting correlations of the ‘true’ test statistics

So perhaps Assumption (4) can be relaxed . . .
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Set-Up

Data generating process and testing problem:
I.i.d. random vectors from N(θ ,Σ)

θi = 0 or θi = 0.2
Σ has constant correlation ρ

Hi : θi ≤ 0 vs. H ′
i : θi > 0

Tn,i is the usual t-statistic

Methods considered:
(BH) Benjamini and Hochberg (1995)
(STS) Storey et al. (2004) with λ = 0.5
(Boot) Bootstrap method

Criteria:
Empirical FDR (nominal α = 10%)
Average number of true rejections
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Results

ρ = 0 ρ = 0.9
BH STS Boot BH STS Boot

All θi = 0
Control 10.3 11.0 10.3 4.5 32.6 10.2
Rejected 0.0 0.0 0.0 0.0 0.0 0.0

Ten θi = 0.2
Control 8.0 10.2 7.9 4.6 28.0 9.6
Rejected 3.4 3.9 3.4 3.7 4.6 5.9

Twenty five θi = 0.2
Control 5.0 10.4 6.3 3.8 19.3 9.6
Rejected 13.2 17.8 14.4 12.7 14.4 16.5

All θi = 0.2
Control 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 34.7 49.9 47.3 31.9 47.5 36.3
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