Unbiased estimation after modification of a group sequential design

Nina Timmesfeld, Helmut Schäfer, Hans-Helge Müller

Biometry and Epidemiology

Philipps-University, Marburg

MCP 2007, 8-11 July 2007, Vienna

Group-sequential Designs

Group-sequential designs

- inspect the data at specified time points
- allow for early stopping with rejection or acceptance of the null hypothesis
 - early stopping for large effect size
 - fulfilling a power requirement for a range of effect sizes combined with small expected sample size
 - mostly smaller than the sample size of the corresponding fixed sample test

Ethical and economical reasons

choosing group-sequential design

Model and Notations

Assumptions:

- K (interim) analyses at time points $t_1, \ldots, t_K = 1$, e.g. $t_i = \frac{n_i}{n_K}$ or information time fraction
- cumulative statistics S_{t_i} can be approximated by a Brownian Motion with drift δ

Then we have

→ $S_{t_i} \sim N(t_i \delta, t_i)$ → $S_{t_i} - S_{t_{i-1}}$ and $S_{t_{i-1}}$ are independent

Sometimes there are reasons to modify the ongoing trial For example:

safety reasons

need for more safety data than planned

external reasons

- a competing trial considered smaller effect sizes to be relevant
- reasons from misspecified assumptions at the design stage
 - misspecified nuisance parameter assumptions
 - misspecified range of effect sizes

The decision often depends on the observed data!

If the initial design was not planned as an adaptive one:

Can we change the original design without type I error inflation?

(Cui et al., 1999; Müller & Schäfer, 2001, 2004) **General condition:**

 $\mathbb{P}_{H_0}(\text{reject } H_0, \text{ initial design}|\text{interim data})$ $\geq \mathbb{P}_{H_0}(\text{reject } H_0, \text{ new design}|\text{interim data})$

These Probabilities are called

Conditional Rejection Probabilities (CRP)

Modification in our model:

- can be easily calculated using the independency of the increments
 - results in a conditional type I error rate α^* for the remaining part of the trial
 - ightarrow the new design has to have a type I error level of $lpha^*$

required in group-sequential design:

- Data dependent change of
- maximum sample size
 - change of sample size between two consecutive analysis
- number of stages
 - insert or remove interim analyses
- α -spending
 - change the amount of the type I error spent at the interim analyses
- and their combinations

for the drift parameter δ

$$\hat{\delta}(s, t_i) = \mathbb{E}\left\{\frac{S_{t_1}}{t_1} | S_{t_i} = s\right\}$$

can be computed recursively (Liu & Hall, 1999) quite similar to the "densities" in group-sequential designs

Properties

- does not depend on the design of the remaining part of the trial
 can be determined after data independent
 - stopping of the trial
 - adjustment of the stopping regions
 - modifications of time points of the interim analyses
- is the unique one, which has this property and depends on the sufficient statistics

But is biased if the design modifications depend on the interim data Examples:

- data dependent
 - unplanned stopping of the trial
 - modification of the α -spending

Adapting the mean unbiased estimator

Condition similar to the CRP-condition:

General:

 $\mathbb{E}_{\delta} \{ \text{ initial estimator } | \text{ interim data } \} \\ = \mathbb{E}_{\delta} \{ \text{ new estimator } | \text{ interim data } \}$

in the fixed sample case

unbiased estimator at the original final analysis: $\frac{S_{t_1}}{t_1}$ unplanned interim analysis at t_I :

$$\mathbb{E}_{\delta}\left\{\frac{S_{t_1}}{t_1}|S_{t_I}=s\right\} = \frac{1}{t_1}\left(s + \mathbb{E}_{\delta}\left\{S_{t_1}-S_{t_I}\right\}\right) = \frac{1}{t_1}\left[s + (t_1 - t_I)\,\delta\right]$$

new final analysis at \tilde{t}_1 : Since $\mathbb{E}_{\delta}\{S_{\tilde{t}_1} - S_{t_I}\} = (\tilde{t}_1 - t_I) \delta$ the new estimator is

$$\frac{1}{t_1} \left[s + \frac{t_1 - t_I}{\tilde{t}_1 - t_I} \left(S_{\tilde{t}_1} - S_{t_I} \right) \right]$$

Extension of a two-stage design

- initially planned: 2-stages, analyses at t_1 and t_2
- at the interim analysis (t_1) : decision to extend the information time
- new final analysis at $t_2 > t_2$
 - new estimator at the final analysis has to satisfy

$$\mathbb{E}_{\delta}\{\hat{\delta}(\boldsymbol{s}+S_{t_2}-S_{t_1},t_2)\} = \mathbb{E}_{\delta}\{\hat{\tilde{\delta}}_{\boldsymbol{s}}(S_{\tilde{t}_2}-S_{t_1},\tilde{t}_2)\}$$

Similar arguments as in Liu & Hall (1999) gives

$$\hat{\tilde{\delta}}_s(x,\tilde{t}_2) = \frac{1}{\varphi_{\tilde{t}_2-t_1}(x)} \int_{-\infty}^{\infty} \hat{\delta}(s+y,t_2)\varphi_{t_2-t_1}(y)\varphi_{\tilde{t}_2-t_2}(x-y)dy$$

Extension: example

planned: analyses at $t_1 = 0.5, t_2 = 1$, $\alpha = 0.05, \alpha_1 = 0.02$, interim analysis \rightarrow final analysis at $\tilde{t}_2 = 1.2$

Figure 1: fixed (dashed) and group-sequential estimator after extension of the information time (red lines) and for an initial design with $t_2 = 1.2$ and s = 0 (left) and s = 1.5

Shortening of a two-stage design

at the interim analysis decision to reduce information time $(\tilde{t}_2 < t_2)$ new estimator at the final analysis is given by an integral equation

$$\hat{\delta}(s+y,t_2) = \frac{1}{\varphi_{t_2-t_1}(x)} \int_{-\infty}^{\infty} \hat{\tilde{\delta}}_s(y,\tilde{t}_2) \varphi_{\tilde{t}_2-t_1}(y) \varphi_{t_2-\tilde{t}_2}(x-y) dy$$

can be computed numerical by discrete fourier transform

Figure 2: fixed (dashed) and group-sequential estimator after shortening of the information time (red lines) and for an initial design with $t_2 = 0.8$ and s = 0 (left) and s = 1.5

At an interim analysis it is decided to

- leave out further interim analyses
- to do only the final analysis at the planned time point t_K

Adaptation of the estimator:

- for each planned interim analyses, extend the estimator to the final analysis
 - quite similar to the extension of a two stage design, only the integration regions and the densities have to modified slightly
 - the new estimator is the sum of all extended estimators

The estimator can be obtained in 3 steps Calculate the estimator for a group-sequential design

- 1. which has only one analysis at the initially planned final analysis (t_K)
 - Iast slide
- 2. with one analysis at the time point of the first interim analysis of the modified design
 - shortening/ extension of a 2-stage design
- 3. with analyses at the time points of the new design
 - recursive, similar as in Liu & Hall (1999)

Conclusion

- the unbiased estimator
 - does not depend on the design of the remaining part of the trial
 - allows only for data independent modifications
- in the case of data dependent modifications
 - the estimator needs to be modified to maintain unbiasedness
 - the modified estimator can be calculated for all types of design modifications by
 - integration
 - solving integral equations
 - both of them
 - these computations might be complex

References

CUI, L., HUNG, H. & WANG, S. (1999). Modification of sample size in group sequential clinical trials. *Biometrics* 55 853–857.
LIU, A. & HALL, W. (1999). Unbiased estimation following a group sequential test. *Biometrika* 86 71–78.
MÜLLER, H. H. & SCHÄFER, H. (2001). Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential approaches. *Biometrics* 57 886–891.
MÜLLER, H. H. & SCHÄFER, H. (2004). A general statistical principle for changing a design any time during the course of a trial. *Statistics in Medicine* 23 2497–2508.