On Weighted Hochberg Procedures

Ajit C. Tamhane
Northwestern University
(Joint work with Lingyun Liu)

Research supported by grants from NHLBI and NSA.
1. Introduction

- Hypotheses: H_1, H_2, \ldots, H_n, p-values: p_1, p_2, \ldots, p_n, weights: w_1, w_2, \ldots, w_n

- Ordered p-values: $p(1) \leq p(2) \leq \cdots \leq p(n)$

- Ordered hypotheses and weights: $H(1), H(2), \ldots, H(n)$ and $w(1), w(2), \ldots, w(n)$

- Later we will show that the weighted Hochberg procedure based on ordered weighted p-values: $p_i^* = p_i / w_i$ does not control the familywise error rate (FWER).
2. Weighted Procedures

- **Weighted Holm (WHM) Procedure:** Accept $H(i), H(i+1), \ldots, H(n)$ & stop testing if

 \[p(i) > \frac{w(i)}{\sum_{k=i}^{n} w(k)} \alpha; \]

 otherwise reject $H(i)$ and test $H(i+1)$. Benjamini & Hochberg (1997)

- **Weighted Simes (WSM) Procedure:** Let

 \[I = \{i_1, i_2, \ldots, i_m\} \subseteq \{1, 2, \ldots, n\} \]

 and let

 \[p(i_1) \leq p(i_2) \leq \cdots \leq p(i_m). \]

 Reject $H_I = \bigcap_{j=1}^{m} H_{i_j}$ at level α if

 \[p(i_j) \leq \frac{\sum_{k=1}^{j} w(i_k)}{\sum_{k=1}^{m} w(i_k)} \alpha \]

 for some $j = 1, 2, \ldots, m$.
• **Weighted Closed (WCL) Procedure:** Use the WSM procedure to test all intersections and follow the closure principle.

• **Weighted Hochberg (WHC) Procedure:** Reject \(H(i), H(i-1), \ldots, H(1)\) and stop testing if

\[
p(i) \leq \frac{w(i)}{\sum_{k=i}^{n} w(k)} \alpha;
\]

otherwise accept \(H(i)\) and test \(H(i-1)\).
3. Does WHC Control FWER?
3.1 Proof Using the Closure Method

- Show that rejection of any hypothesis by WHC implies its rejection by WLC.
- There is a gap in Hochberg’s proof (for equally weighted hypotheses) where he omits showing that WLC rejects $H_{(j)}$ for $j < i$ if WHC rejects $H_{(i)}$ for $i < n$.
- The proof fails in this case for general weights, but works for equal weights (thus filling the gap in Hochberg’s proof).
Counterexample

\[
\begin{array}{ccc}
H_1 & H_2 & H_3 \\
p_1 = 0.03 & p_2 = 0.035 & p_3 = 0.1 \\
w_1 = 0.2 & w_2 = 0.6 & w_3 = 0.2 \\
c_1 = \frac{w_1}{w_1 + w_2 + w_3} \alpha = 0.01 & c_2 = \frac{w_2}{w_2 + w_3} \alpha = 0.0375 & c_3 = \frac{w_3}{w_3} \alpha = 0.05 \\
\end{array}
\]

- WHC rejects \(H_1 \) and \(H_2 \) since \(p_3 > 0.05 \) but \(p_2 < 0.0375 \).
- But WCL does not reject \(H_1 \cap H_3 \) since

\[
p_3 > 0.05 \text{ and } p_1 > \frac{w_1}{w_1 + w_3} \alpha = 0.025.
\]

Hence it does not reject \(H_1 \).
3.2 Alternative Method of Proof

- A simpler proof (without using the closure principle) of Hochberg’s procedure: If H_1, \ldots, H_m are true and H_{m+1}, \ldots, H_n are false then FWER is maximized when $p_{m+1}, \ldots, p_n \to 0$. Hence

\[
1 - \text{FWER} = P\{\text{Accept } H_1, \ldots, H_m\} \\
\geq P\left\{p_{(i_{n-m+j})} > \frac{\alpha}{n - (n - m) - j + 1}, j = 1, \ldots, m\right\} \\
\geq P\left\{p_{(i_j)} > \frac{\alpha}{m - j + 1}, j = 1, \ldots, m\right\} \\
\geq P\left\{p_{(i_j)} > \frac{j\alpha}{m}, j = 1, \ldots, m\right\} \\
= 1 - \alpha \text{ by Simes identity.}
\]
• This proof fails in the weighted case because FWER of WHC is not always maximized when false \(p \)-values \(\to 0 \).

• **Counterexample:** Suppose \(H_1 \) and \(H_3 \) are true and \(H_2 \) is false. WHC rejects \(H_1 \) and \(H_2 \), hence commits a type I error. Now let \(p_2 \to 0 \). Then \(p_2 = 0 < p_1 = 0.03 < p_3 = 0.1 \). The critical values equal

\[
c_2 = \frac{w_2}{w_1 + w_2 + w_3} \alpha = 0.03, \quad c_1 = \frac{w_1}{w_1 + w_3} \alpha = 0.025, \quad c_3 = \alpha = 0.05.
\]

WHC rejects only \(H_2 \) and hence does not commit a type I error.

Therefore letting \(p_2 \to 0 \) does not maximize FWER.
4. Conservative Weighted Hochberg Procedure (CWHC)

Matrix of critical constants for WCL that uses WSM ($n = 3$):

$$
C = \begin{bmatrix}
\alpha \\
\end{bmatrix}
$$

$$
= \begin{bmatrix}
\alpha \\
\alpha \frac{w(1)}{w(1)+w(2)} \alpha \\
\alpha \frac{w(1)}{w(1)+w(3)} \alpha \\
\alpha \frac{w(2)}{w(2)+w(3)} \alpha \\
\alpha \frac{w(1)+w(2)}{w(1)+w(2)+w(3)} \alpha \\
\alpha \frac{w(1)}{w(1)+w(2)+w(3)} \alpha \\
\end{bmatrix}
.$$
• Liu (1996) showed that if all column (row) entries of C are equal then the closure procedure has a step-up (step-down) shortcut with the last row (first column) as its critical constants.

• Make column entries equal by taking the minimum of each column, which results in a conservative step-up procedure.

• Need to take the minimum of only the top $\binom{n}{m}$ entries in the mth column, $m = 1, \ldots, n$.
\[C = \begin{bmatrix}
\alpha \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
\alpha \\
\alpha \\
0.25\alpha \\
\end{bmatrix}. \]
Example:

Step 1: Compare $p_{(3)} = 0.1$ with $\alpha = 0.05 \Rightarrow$ Do not reject $H_{(3)}$.

Step 2: Compare $p_{(2)} = 0.035$ with $0.25\alpha = 0.0125 \Rightarrow$ Do not reject $H_{(2)}$.

Step 3: Compare $p_{(1)} = 0.03$ with $0.2\alpha = 0.01 \Rightarrow$ Do not reject $H_{(1)}$.
5. Simulations

Table 1: Estimates of FWER ($n = 3$, Three True Hypotheses)

<table>
<thead>
<tr>
<th>Weights</th>
<th>WHC</th>
<th>CWHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1, 0.45, 0.45)</td>
<td>0.0486</td>
<td>0.0480</td>
</tr>
<tr>
<td>(0.2, 0.4, 0.4)</td>
<td>0.0496</td>
<td>0.0492</td>
</tr>
<tr>
<td>(0.3, 0.35, 0.35)</td>
<td>0.0491</td>
<td>0.0491</td>
</tr>
<tr>
<td>(0.4, 0.3, 0.3)</td>
<td>0.0491</td>
<td>0.0489</td>
</tr>
<tr>
<td>(0.5, 0.25, 0.25)</td>
<td>0.0488</td>
<td>0.0485</td>
</tr>
<tr>
<td>(0.6, 0.2, 0.2)</td>
<td>0.0503</td>
<td>0.0498</td>
</tr>
<tr>
<td>(0.7, 0.15, 0.15)</td>
<td>0.0486</td>
<td>0.0476</td>
</tr>
<tr>
<td>(0.8, 0.1, 0.1)</td>
<td>0.0495</td>
<td>0.0480</td>
</tr>
<tr>
<td>(0.9, 0.05, 0.05)</td>
<td>0.0504</td>
<td>0.0486</td>
</tr>
</tbody>
</table>

$N = 100,000, \ SE = 0.00057$
6. An Alternate Weighted Hochberg Procedure (WHC*)

- Order weighted p-values, \(p_i^* = \frac{p_i}{w_i} \): \(p_1^* \leq p_2^* \leq \cdots \leq p_n^* \).
 Let \(H_1^*, H_2^*, \ldots, H_n^* \) be the corresponding hypotheses and \(w_1^*, w_2^*, \ldots, w_n^* \) the corresponding weights.

- Reject \(H_{(i)}^*, H_{(i-1)}^*, \ldots, H_{(1)}^* \) and stop testing if
 \[
 p_i^* \leq \frac{\alpha}{\sum_{k=i}^{n} w_{(k)}^*} ;
 \]
 otherwise accept \(H_{(i)}^* \) and continue to test \(H_{(i-1)}^* \). (Based on weighted Holm procedure proposed by Holm (1979))
$$1 - \text{FWER} = \begin{cases}
1 - \alpha + \alpha^2 - \frac{\alpha^2}{2} \left(\frac{w_1}{w_2} + \frac{w_2}{w_1} \right) & \text{if } \frac{\alpha}{1+\alpha} \leq w_1 \leq \frac{1}{2} \\
(1 - \alpha)^2 + \frac{w_1}{2w_2} (1 - \alpha^2) & \text{if } w_1 \leq \frac{\alpha}{1+\alpha}.
\end{cases}$$
7. Conclusions

• Overall null appears to be the least favorable configuration (LFC) of WHC.
• Even in this LFC, WHC controls the FWER.
• CWHC guarantees conservative control of FWER.
• WHC* does not control the FWER.
• WHC is recommended.