New adaptive procedures that control the FDR

Speaker : Etienne Roquain (MIG - INRA, Jouy-en-Josas France)

Joint work with **Gilles Blanchard** (Fraunhofer FIRST.IDA, Berlin Germany)

- $(\mathcal{X}, \mathfrak{X}, \mathbf{P})$ probability space.
- \mathcal{H} a finite set of hypotheses for $\mathbf{P}, m := |\mathcal{H}|$ (known)

- $(\mathcal{X}, \mathfrak{X}, \mathbf{P})$ probability space.
- \mathcal{H} a finite set of hypotheses for $\mathbf{P}, m := |\mathcal{H}|$ (known)
 - \mathcal{H}_0 set of true hypotheses
 - $m_0 := |\mathcal{H}_0|, \pi_0 := m_0/m$ (unknown)

- $(\mathcal{X}, \mathfrak{X}, \mathbf{P})$ probability space.
- \mathcal{H} a finite set of hypotheses for $\mathbf{P}, m := |\mathcal{H}|$ (known)
 - \mathcal{H}_0 set of true hypotheses
 - $m_0 := |\mathcal{H}_0|, \pi_0 := m_0/m$ (unknown)
- For each $h \in \mathcal{H}$, *p*-value: $p_h : \mathcal{X} \to [0, 1]$ (measurable) such that

If $h \in \mathcal{H}_0$, $\forall t \in [0, 1], \mathbf{P}(p_h \le t) \le t$ If $h \notin \mathcal{H}_0, \mathcal{D}(p_h)$ unspecified

- $(\mathcal{X}, \mathfrak{X}, \mathbf{P})$ probability space.
- \mathcal{H} a finite set of hypotheses for $\mathbf{P}, m := |\mathcal{H}|$ (known)
 - \mathcal{H}_0 set of true hypotheses
 - $m_0 := |\mathcal{H}_0|, \pi_0 := m_0/m$ (unknown)
- For each $h \in \mathcal{H}$, *p*-value: $p_h : \mathcal{X} \to [0, 1]$ (measurable) such that

If $h \in \mathcal{H}_0$, $\forall t \in [0, 1], \mathbf{P}(p_h \le t) \le t$ If $h \notin \mathcal{H}_0, \mathcal{D}(p_h)$ unspecified

• A multiple testing procedure: a (measurable) function

$$R: \mathbf{p} = (p_h)_{h \in \mathcal{H}} \in [0, 1]^{\mathcal{H}} \mapsto R(\mathbf{p}) \subset \mathcal{H}$$

(returns the rejected hypotheses)

Type I error

R makes a type I error for *h*:

 $h \in \mathcal{H}_0 \cap R$

Type I error

R makes a type I error for *h*:

$$h \in \mathcal{H}_0 \cap R$$

False Discovery Rate of R [Benjamini and Hochberg (1995)]:

$$FDR(R) := \mathbf{E}\left[\frac{|\mathcal{H}_0 \cap R|}{|R|}\mathbf{I}\{|R| > 0\}\right]$$

Type I error

R makes a type I error for *h*:

$$h \in \mathcal{H}_0 \cap R$$

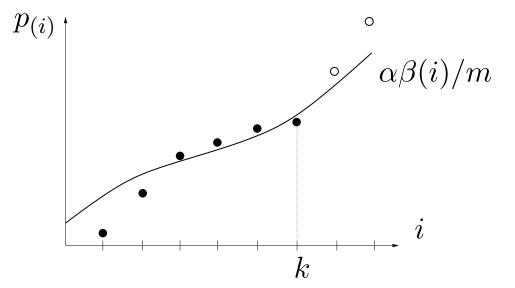
False Discovery Rate of R [Benjamini and Hochberg (1995)]:

$$FDR(R) := \mathbf{E}\left[\frac{|\mathcal{H}_0 \cap R|}{|R|}\mathbf{1}\{|R| > 0\}\right]$$

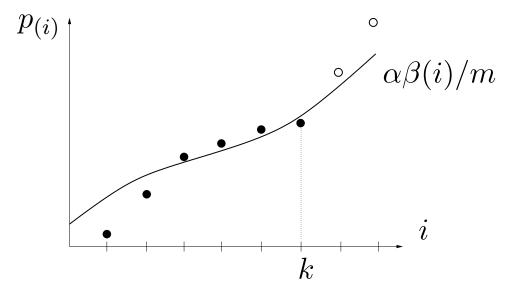
How to build R with $FDR(R) \leq \alpha$?

If $p_{(1)} \leq \cdots \leq p_{(m)}$ are the ordered *p*-values and $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ non-decreasing: threshold function

If $p_{(1)} \leq \cdots \leq p_{(m)}$ are the ordered *p*-values and $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ non-decreasing: threshold function



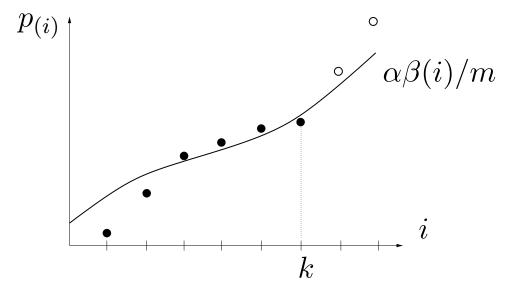
If $p_{(1)} \leq \cdots \leq p_{(m)}$ are the ordered *p*-values and $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ non-decreasing: threshold function



Definition (step-up procedure with threshold function β)

 $R_{\beta} := \{ h \in \mathcal{H} | p_h \le p_{(k)} \} \text{ where } k := \max\{ i | p_{(i)} \le \alpha \beta(i)/m \}$

If $p_{(1)} \leq \cdots \leq p_{(m)}$ are the ordered *p*-values and $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ non-decreasing: threshold function



Definition (step-up procedure with threshold function β)

 $R_{\beta} := \{h \in \mathcal{H} | p_h \le p_{(k)}\} \text{ where } k := \max\{i | p_{(i)} \le \alpha\beta(i)/m\}$

Linear step-up procedure: R_{β} where $\beta(i) = i$.

Goal in step-up FDR control

Find a threshold function β such that

 $FDR(R_{\beta}) \leq \alpha$

Goal in step-up FDR control

Find a threshold function β such that

 $FDR(R_{\beta}) \leq \alpha$

With β as "large" as possible

Recall that $\pi_0 = m_0/m$.

Recall that $\pi_0 = m_0/m$.

Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001): **Theorem 1** *p*-values independent or positively dependent (PRDS): The linear step-up procedure has a FDR smaller than $\pi_0 \alpha$, i.e. for $\beta(i) = i$,

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Recall that $\pi_0 = m_0/m$.

Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001): **Theorem 1** *p*-values independent or positively dependent (PRDS): The linear step-up procedure has a FDR smaller than $\pi_0 \alpha$, i.e. for $\beta(i) = i$,

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Benjamini and Yekutieli (2001):

Theorem 2 *p*-values with general dependencies: The step-up procedure with threshold function $\beta(i) = i/(1+1/2 + \cdots + 1/m)$ satisfies

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Generalization of Blanchard and Fleuret (2007):

Generalization of Blanchard and Fleuret (2007):

Theorem 3 *p*-values with general dependencies: If β of the form:

$$\beta(i) = \int_0^i u d\nu(u),$$

and ν is some distribution on $(0,\infty)$,

 $FDR(R_{\beta}) \leq \pi_0 \alpha.$

Generalization of Blanchard and Fleuret (2007):

Theorem 3 *p*-values with general dependencies: If β of the form:

$$\beta(i) = \int_0^i u d\nu(u),$$

and ν is some distribution on $(0,\infty)$,

 $FDR(R_{\beta}) \leq \pi_0 \alpha.$

Remarks : ν prior idea on the final number of rejections

Generalization of Blanchard and Fleuret (2007):

Theorem 3 *p*-values with general dependencies: If β of the form:

$$\beta(i) = \int_0^i u d\nu(u),$$

and ν is some distribution on $(0,\infty)$,

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Remarks : ν prior idea on the final number of rejections - ν uniform on $\{1, \dots, m\}$ gives $\beta(i) = i(i+1)/(2m)$

Generalization of Blanchard and Fleuret (2007):

Theorem 3 *p*-values with general dependencies: If β of the form:

$$\beta(i) = \int_0^i u d\nu(u),$$

and ν is some distribution on $(0,\infty)$,

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Remarks : ν prior idea on the final number of rejections - ν uniform on $\{1, \dots, m\}$ gives $\beta(i) = i(i+1)/(2m)$ - $\nu(\{k\}) \propto 1/k$ gives $\beta(i) = i/(1+1/2+\dots+1/m)$

Generalization of Blanchard and Fleuret (2007):

Theorem 3 *p*-values with general dependencies: If β of the form:

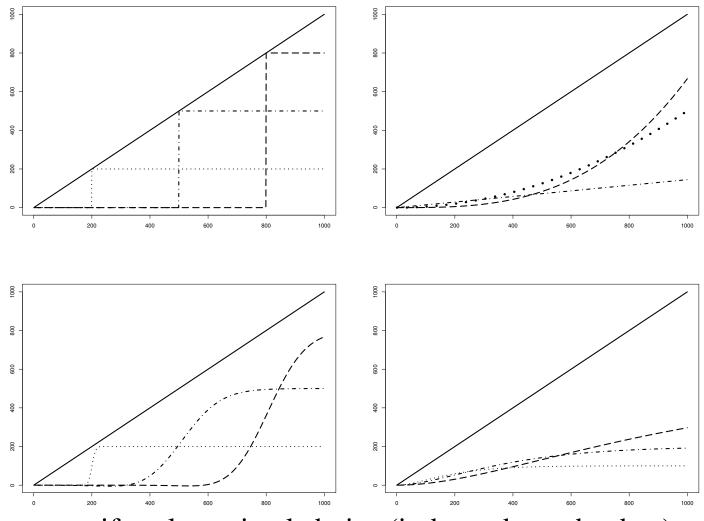
$$\beta(i) = \int_0^i u d\nu(u),$$

and ν is some distribution on $(0,\infty)$,

 $\operatorname{FDR}(R_{\beta}) \leq \pi_0 \alpha.$

Remarks : ν prior idea on the final number of rejections - ν uniform on $\{1, \dots, m\}$ gives $\beta(i) = i(i+1)/(2m)$ - $\nu(\{k\}) \propto 1/k$ gives $\beta(i) = i/(1+1/2+\dots+1/m)$ - $\nu(\{k\}) \propto k$ gives $\beta(i) = \frac{i(i+1)(2i+1)}{3m(m+1)}$

Some choices for β (general dependencies)



⇒ no uniformly-optimal choice (it depends on the data)
To control FDR under gen. dep.: not only BY's procedure !

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Adaptivity problem: [Benjamini & Hochberg (00)], [Black (04)], [Genovese & Wasserman (04)],[Benjamini, Krieger & Yekutieli (06)],...

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Adaptivity problem: [Benjamini & Hochberg (00)], [Black (04)], [Genovese & Wasserman (04)],[Benjamini, Krieger & Yekutieli (06)],... Level $\pi_0 \alpha$ smaller than level α \Rightarrow conservative results (especially when π_0 small)

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Adaptivity problem: [Benjamini & Hochberg (00)], [Black (04)], [Genovese & Wasserman (04)],[Benjamini, Krieger & Yekutieli (06)],... Level $\pi_0 \alpha$ smaller than level α \Rightarrow conservative results (especially when π_0 small)

Idea: put $\beta^{\star} = \beta \pi_0^{-1}$, so that $FDR(R_{\beta^{\star}}) \leq \alpha$

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Adaptivity problem: [Benjamini & Hochberg (00)], [Black (04)], [Genovese & Wasserman (04)],[Benjamini, Krieger & Yekutieli (06)],... Level $\pi_0 \alpha$ smaller than level α \Rightarrow conservative results (especially when π_0 small)

Idea: put $\beta^{\star} = \beta \pi_0^{-1}$, so that $FDR(R_{\beta^{\star}}) \leq \alpha$

 π_0 unknown $\Rightarrow \beta^*$ unknown $! \Rightarrow R_{\beta^*}$ oracle procedure

Summary: we have $FDR(R_{\beta}) \leq \pi_0 \alpha$ when

- 1. The *p*-values are independent or positively dependent and $\beta(i) = i$
- 2. The *p*-values with general dependencies and $\beta(i) = \int_0^i u d\nu(u) \le i$, and ν is some prior on $(0, \infty)$

Adaptivity problem: [Benjamini & Hochberg (00)], [Black (04)], [Genovese & Wasserman (04)],[Benjamini, Krieger & Yekutieli (06)],... Level $\pi_0 \alpha$ smaller than level α \Rightarrow conservative results (especially when π_0 small)

Idea: put $\beta^{\star} = \beta \pi_0^{-1}$, so that $FDR(R_{\beta^{\star}}) \leq \alpha$

 $\Delta \quad \pi_0 \text{ unknown} \Rightarrow \beta^* \text{ unknown } ! \Rightarrow R_{\beta^*} \text{ oracle procedure}$

(π_0)-Adaptive step-up procedures: $R_{\hat{\beta}}$ with $\hat{\beta} \simeq \beta^*$

Find $\hat{\beta} \geq \beta$ such that $FDR(R_{\hat{\beta}}) \leq \alpha$ and $\hat{\beta}$ "close to" $\beta \pi_0^{-1}$

Find $\hat{\beta} \ge \beta$ such that $FDR(R_{\hat{\beta}}) \le \alpha$ and $\hat{\beta}$ "close to" $\beta \pi_0^{-1}$

Under several dependence cases :

- independence ($\beta(i) = i$)
- positive dependencies ($\beta(i) = i$)
- general dependencies ($\beta(i) = \int_0^i u d\nu(u)$ given a prior ν)

Find $\hat{\beta} \geq \beta$ such that $FDR(R_{\hat{\beta}}) \leq \alpha$ and $\hat{\beta}$ "close to" $\beta \pi_0^{-1}$

Under several dependence cases :

- independence $(\beta(i) = i)$
- positive dependencies ($\beta(i) = i$)
- general dependencies ($\beta(i) = \int_0^i u d\nu(u)$ given a prior ν)

For this:

Two-stage procedure:

- 1. \hat{F} estimates π_0^{-1}
- 2. Take $\hat{\beta} = \beta . \hat{F}$

Find $\hat{\beta} \geq \beta$ such that $FDR(R_{\hat{\beta}}) \leq \alpha$ and $\hat{\beta}$ "close to" $\beta \pi_0^{-1}$

Under several dependence cases :

- independence ($\beta(i) = i$)
- positive dependencies ($\beta(i) = i$)
- general dependencies ($\beta(i) = \int_0^i u d\nu(u)$ given a prior ν)

For this:

Two-stage procedure:

- 1. \hat{F} estimates π_0^{-1}
- 2. Take $\hat{\beta} = \beta . \hat{F}$

One-stage procedure: $\hat{\beta}$ is deterministic

Outline

- I. When the *p*-values are independent
 - Some existing adaptive procedures
 - New adaptive procedures
- II. When the *p*-values are dependent
 - New (and first ?) adaptive procedures

I. Existing adaptive procedures with FDR control

[Benjamini, Krieger and Yekutieli (2006)] **BKY06**:

- 1. Apply the standard step-up linear procedure R_0 at level $\alpha/(1+\alpha)$ and put $\hat{F} = \frac{m}{m-|R_0|}$
- 2. Take the step-up procedure R with threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$

I. Existing adaptive procedures with FDR control

[Benjamini, Krieger and Yekutieli (2006)] BKY06:

- 1. Apply the standard step-up linear procedure R_0 at level $\alpha/(1+\alpha)$ and put $\hat{F} = \frac{m}{m-|R_0|}$
- 2. Take the step-up procedure R with threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$

Using [Storey (2001)] Storey- λ :

1.
$$\hat{F} = \frac{(1-\lambda)m}{|\{h \in \mathcal{H} | p_h > \lambda\}|+1}$$
 (slightly modified)

2. Take the step-up procedure R with threshold $\frac{\alpha i}{m}\hat{F}$

I. Existing adaptive procedures with FDR control

[Benjamini, Krieger and Yekutieli (2006)] BKY06:

- 1. Apply the standard step-up linear procedure R_0 at level $\alpha/(1+\alpha)$ and put $\hat{F} = \frac{m}{m-|R_0|}$
- 2. Take the step-up procedure R with threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$

Using [Storey (2001)] Storey- λ :

1.
$$\hat{F} = \frac{(1-\lambda)m}{|\{h \in \mathcal{H} | p_h > \lambda\}|+1}$$
 (slightly modified)

2. Take the step-up procedure R with threshold $\frac{\alpha i}{m}\hat{F}$ Classical choice : $\lambda = 1/2$.

I. Existing adaptive procedures with FDR control

[Benjamini, Krieger and Yekutieli (2006)] BKY06:

- 1. Apply the standard step-up linear procedure R_0 at level $\alpha/(1+\alpha)$ and put $\hat{F} = \frac{m}{m-|R_0|}$
- 2. Take the step-up procedure R with threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$

Using [Storey (2001)] Storey- λ :

1.
$$\hat{F} = \frac{(1-\lambda)m}{|\{h \in \mathcal{H} | p_h > \lambda\}|+1}$$
 (slightly modified)

2. Take the step-up procedure R with threshold $\frac{\alpha i}{m}\hat{F}$ Classical choice : $\lambda = 1/2$.

Benjamini, Krieger and Yekutieli (2006):

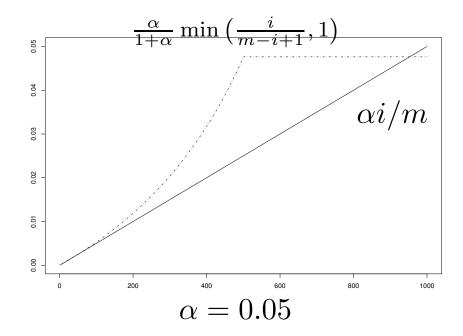
Theorem 4 *p*-values independent These two procedures satisfy $FDR(R) \le \alpha$

Theorem 5 *p*-values independent:

The step-up procedure with global threshold $\frac{\alpha}{1+\alpha} \min\left(\frac{i}{m-i+1}, 1\right)$ has a FDR smaller than α .

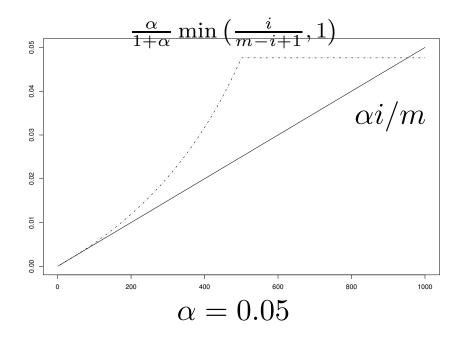
Theorem 5 *p*-values independent:

The step-up procedure with global threshold $\frac{\alpha}{1+\alpha} \min\left(\frac{i}{m-i+1}, 1\right)$ has a FDR smaller than α .



Theorem 5 *p*-values independent:

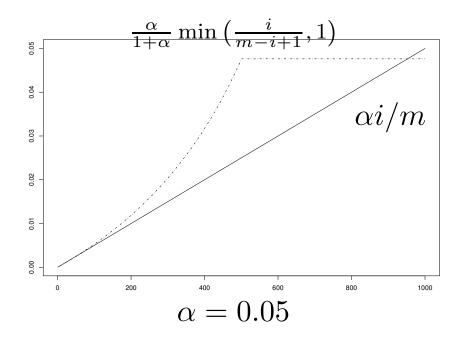
The step-up procedure with global threshold $\frac{\alpha}{1+\alpha} \min\left(\frac{i}{m-i+1}, 1\right)$ has a FDR smaller than α .



⇒ Explicit threshold! ⇒ better than the linear step-up procedure (except when rejects $\geq \frac{1}{1+\alpha}$ or rejects $\leq \frac{1}{m} + \frac{\alpha}{1+\alpha}$ % of hypotheses)

Theorem 5 *p*-values independent:

The step-up procedure with global threshold $\frac{\alpha}{1+\alpha} \min\left(\frac{i}{m-i+1}, 1\right)$ has a FDR smaller than α .



 \Rightarrow Explicit threshold!

 \Rightarrow better than the linear step-up procedure

(except when rejects $\geq \frac{1}{1+\alpha}$ or rejects $\leq \frac{1}{m} + \frac{\alpha}{1+\alpha}$ % of hypotheses)

Idea: use this procedure in the first step !

MCP 2007. July, 13 - p.13

Theorem 6 *p***-values independent**: consider the two-stage procedure :

1. Apply the new one-stage adaptive procedure R'_0 at level α and put $\hat{F} = \frac{m}{m - |R'_0| + 1}$

2. Take the step-up procedure R with global threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$ Then $FDR(R) \leq \alpha$.

Theorem 6 *p***-values independent**: consider the two-stage procedure :

1. Apply the new one-stage adaptive procedure R'_0 at level α and put $\hat{F} = \frac{m}{m - |R'_0| + 1}$

2. Take the step-up procedure R with global threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$ Then $FDR(R) \leq \alpha$.

 \Rightarrow BR07-2S always better than BKY06 (up to the extreme cases in the first step and "+1")

Theorem 6 *p***-values independent**: consider the two-stage procedure :

1. Apply the new one-stage adaptive procedure R'_0 at level α and put $\hat{F} = \frac{m}{m - |R'_0| + 1}$

2. Take the step-up procedure R with global threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$ Then $FDR(R) \leq \alpha$.

 \Rightarrow BR07-2S always better than BKY06 (up to the extreme cases in the first step and "+1")

On simulations:

Theorem 6 *p***-values independent**: consider the two-stage procedure :

1. Apply the new one-stage adaptive procedure R'_0 at level α and put $\hat{F} = \frac{m}{m - |R'_0| + 1}$

2. Take the step-up procedure R with global threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$ Then $FDR(R) \leq \alpha$.

 \Rightarrow BR07-2S always better than BKY06 (up to the extreme cases in the first step and "+1")

On simulations:

- independent case: Power? Storey- $1/2 \gg BR07-2S \gg BKY06$

Theorem 6 *p***-values independent**: consider the two-stage procedure :

1. Apply the new one-stage adaptive procedure R'_0 at level α and put $\hat{F} = \frac{m}{m - |R'_0| + 1}$

2. Take the step-up procedure R with global threshold $\frac{\alpha}{1+\alpha}\frac{i}{m}\hat{F}$ Then $FDR(R) \leq \alpha$.

 \Rightarrow BR07-2S always better than BKY06 (up to the extreme cases in the first step and "+1")

On simulations:

- independent case: Power?

Storey- $1/2 \gg BR07-2S \gg BKY06$

- positively dependent case: FDR control?

Storey-1/2 is not robust!

New two-stage procedure seems robust to positive correlations

Recall: FDR control for step-up procedures with $\alpha\beta(i)/m$ in the cases: - positive dependencies with $\beta(i) = i$

- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Recall: FDR control for step-up procedures with $\alpha\beta(i)/m$ in the cases: - positive dependencies with $\beta(i) = i$

- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Theorem 7 two-stage adaptive procedure:

- 1. Non-adaptive step-up procedure R_0 with threshold $\frac{\alpha}{4} \frac{\beta(i)}{m}$ and put $\hat{F} = \frac{1}{1 - \sqrt{(2|R_0|/m-1)_+}}$
- 2. Step-up procedure R with threshold $\frac{\alpha}{2} \frac{\beta(i)}{m} \hat{F}$

Recall: FDR control for step-up procedures with $\alpha\beta(i)/m$ in the cases: - positive dependencies with $\beta(i) = i$

- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Theorem 7 two-stage adaptive procedure:

- 1. Non-adaptive step-up procedure R_0 with threshold $\frac{\alpha}{4} \frac{\beta(i)}{m}$ and put $\hat{F} = \frac{1}{1 - \sqrt{(2|R_0|/m-1)_+}}$
- 2. Step-up procedure R with threshold $\frac{\alpha}{2} \frac{\beta(i)}{m} \hat{F}$

Then $FDR(R) \leq \alpha$ in the two cases:

- positive dependencies (PRDS) with $\beta(i) = i$
- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Recall: FDR control for step-up procedures with $\alpha\beta(i)/m$ in the cases: - positive dependencies with $\beta(i) = i$

- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Theorem 7 two-stage adaptive procedure:

- 1. Non-adaptive step-up procedure R_0 with threshold $\frac{\alpha}{4} \frac{\beta(i)}{m}$ and put $\hat{F} = \frac{1}{1 - \sqrt{(2|R_0|/m-1)_+}}$
- 2. Step-up procedure R with threshold $\frac{\alpha}{2} \frac{\beta(i)}{m} \hat{F}$

Then $FDR(R) \leq \alpha$ in the two cases:

- positive dependencies (PRDS) with $\beta(i) = i$
- general dependencies with $\beta(i) = \int_0^i u d\nu(u)$ given a prior ν

Loss/ indep case:
$$\frac{\alpha}{2}$$
, $\frac{\alpha}{4}$ and $\frac{1}{1-\sqrt{(2x-1)_+}} \leq \frac{1}{1-x}$

Remarks :

- Estimation based on Markov's inequality (conservative device)

Remarks :

- Estimation based on Markov's inequality (conservative device)
- New procedure better than non-adaptive: if $|R_0|/m \ge 62.5\%$.

Remarks :

- Estimation based on Markov's inequality (conservative device)
- New procedure better than non-adaptive: if $|R_0|/m \ge 62.5\%$.

 $\Rightarrow \text{Useful only if large number of rejections!}$ $(m_0 \text{ small and } p_h, h \notin \mathcal{H}_0 \text{ small})$

Remarks :

- Estimation based on Markov's inequality (conservative device)
- New procedure better than non-adaptive: if $|R_0|/m \ge 62.5\%$.
- $\Rightarrow \text{Useful only if large number of rejections!}$ $(m_0 \text{ small and } p_h, h \notin \mathcal{H}_0 \text{ small})$
- \Rightarrow interest more theoretical than practical.

New adaptive procedures that control the FDR:

- * when the *p*-values are independent:
 one-stage explicit and better than LSU
 two-stage → better than BKY06
 → seems robust to positive correlations.
- * when the *p*-values have positive or general dependencies:
 new (and first ?) two-stage procedures
 → only relevant when large number of rejections.

New adaptive procedures that control the FDR:

* when the *p*-values are independent:
 one-stage explicit and better than LSU
 two-stage → better than BKY06
 → seems robust to positive correlations.

* when the *p*-values have positive or general dependencies: new (and first ?) two-stage procedures

 \rightarrow only relevant when large number of rejections.

Future works:

- Under independence:

Integrate a more efficient estimator in procedures?

New adaptive procedures that control the FDR:

* when the *p*-values are independent:
 one-stage explicit and better than LSU
 two-stage → better than BKY06
 → seems robust to positive correlations.

* when the *p*-values have positive or general dependencies: new (and first ?) two-stage procedures

 \rightarrow only relevant when large number of rejections.

Future works:

- Under independence:

Integrate a more efficient estimator in procedures?

- Under dependence:

Find another device than Markov's inequality?

New adaptive procedures that control the FDR:

* when the *p*-values are independent:
 one-stage explicit and better than LSU
 two-stage → better than BKY06
 → seems robust to positive correlations.

* when the *p*-values have positive or general dependencies: new (and first ?) two-stage procedures

 \rightarrow only relevant when large number of rejections.

Future works:

- Under independence:

Integrate a more efficient estimator in procedures?

- Under dependence:

Find another device than Markov's inequality?

Choose the prior ν from an estimator of π_0 ?

Thank you for your attention!

A preprint is available on: http://genome.jouy.inra.fr/~eroquain

Appendix

For k = 1, ..., m,

$$Y_k \sim \mathcal{N}(\mu_k, 1)$$

For k = 1, ..., m, $Y_k \sim \mathcal{N}(\mu_k, 1)$ For $k \neq k'$, $\operatorname{Cov}(Y_k, Y_{k'}) = \rho$ with $\rho \in [0, 1]$. $\rho = 0 \Rightarrow$ independent case

 $\rho \geq 0 \Rightarrow \text{positive dependent case}$

For k = 1, ..., m, $Y_k \sim \mathcal{N}(\mu_k, 1)$ For $k \neq k'$, $\operatorname{Cov}(Y_k, Y_{k'}) = \rho$ with $\rho \in [0, 1]$. $\rho = 0 \Rightarrow$ independent case $\rho \ge 0 \Rightarrow$ positive dependent case

One-sided tests: $H_{0,k}$: " $\mu_k \leq 0$ ", $k = 1, \ldots, m$

For k = 1, ..., m, $Y_k \sim \mathcal{N}(\mu_k, 1)$ For $k \neq k'$, $\operatorname{Cov}(Y_k, Y_{k'}) = \rho$ with $\rho \in [0, 1]$. $\rho = 0 \Rightarrow$ independent case $\rho \ge 0 \Rightarrow$ positive dependent case

One-sided tests: $H_{0,k}$: " $\mu_k \le 0$ ", k = 1, ..., m

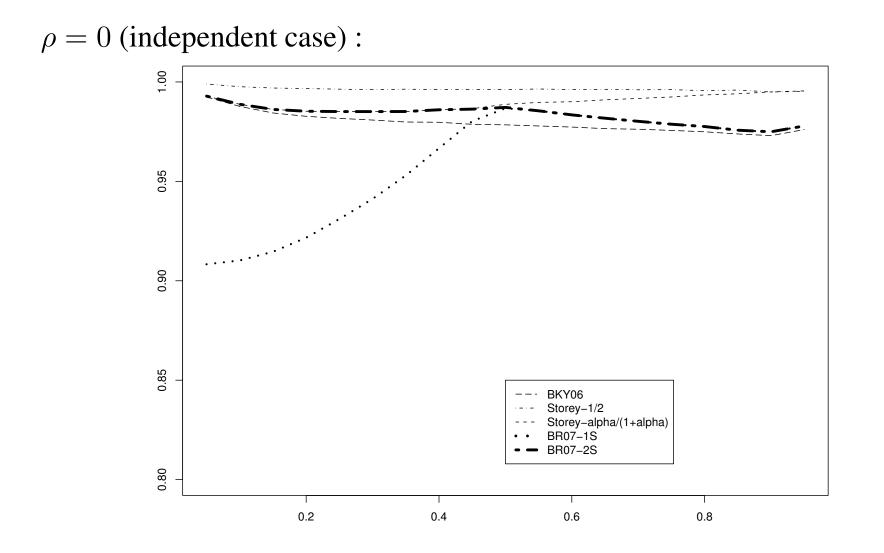
With 10000 simulations, m = 100, mean = 3:

- Power (in independent case) :

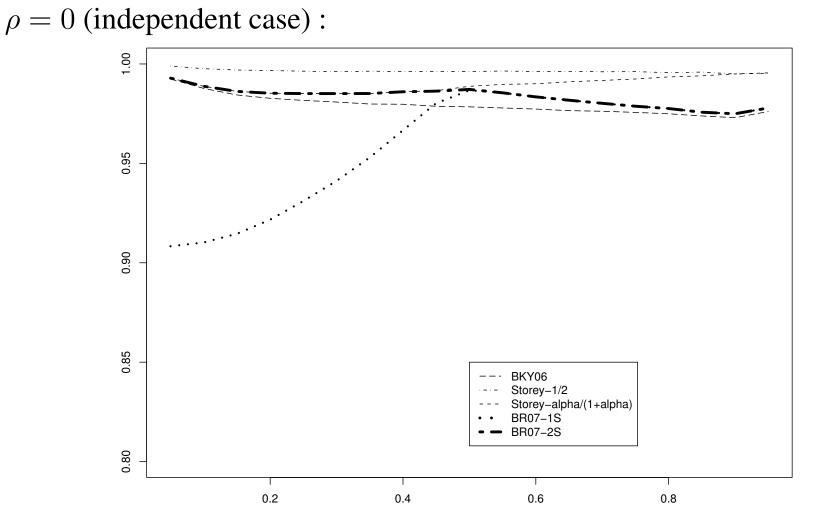
nb of correct rejections / nb of correct rejections of the oracle procedure

- FDR estimation (in the positive dependent case)

I. Simulations, Power, indep. case

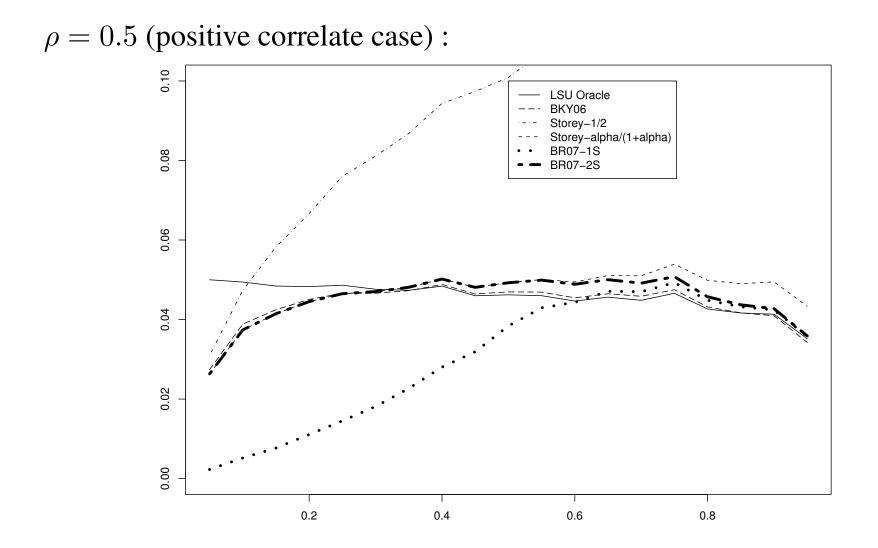


I. Simulations, Power, indep. case

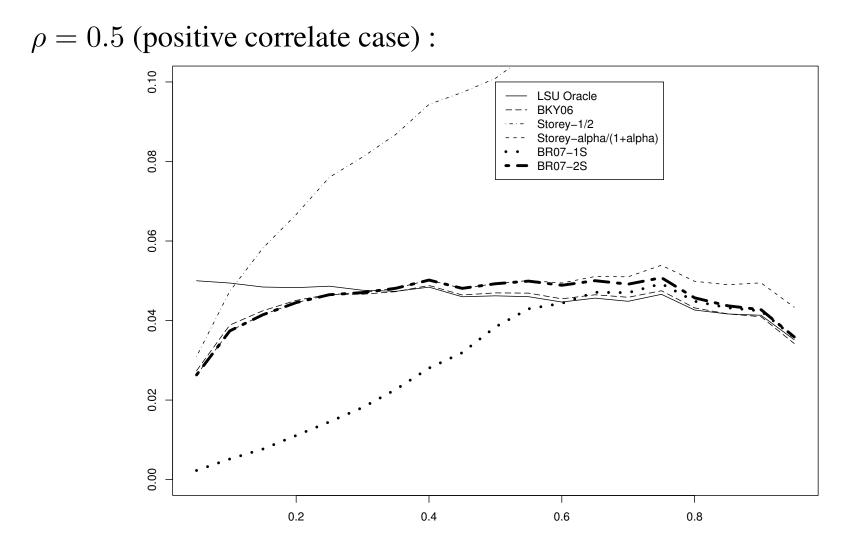


Storey-1/2 \gg Storey- $\alpha/(1 + \alpha) \gg$ BR07-2S \gg BKY06

I. Simulations, FDR, with corr

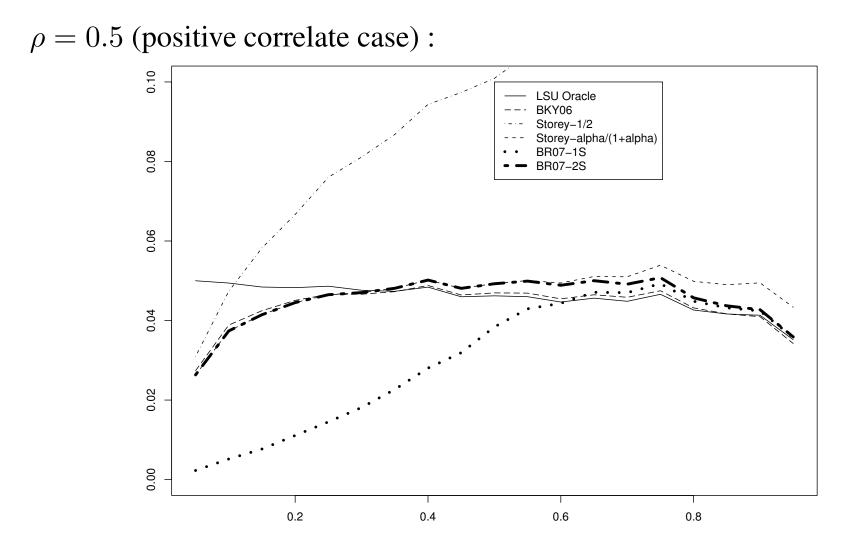


I. Simulations, FDR, with corr



 \Rightarrow Storey-1/2 is not robust! Storey- $\alpha/(1+\alpha)$ not robust? (max $\simeq 0.054$)

I. Simulations, FDR, with corr



⇒ Storey-1/2 is not robust! Storey- $\alpha/(1 + \alpha)$ not robust? (max $\simeq 0.054$) ⇒ New procedures seem robust to positive correlations

 $m = 100, m_0 = 5, \rho = 0.1, 2 \le \text{mean} \le 5$

