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High-dimensional multiple testing problem

Consider a multiple testing problem with m hypotheses and m1 false null hypothe-
ses.

n(the number of replicates)� m(the number of hypotheses).

Controlling type I error rates adjusting for multiplicity is main concern.

Decision setting (Benjamini and Hochberg (1995)):

Declared Declared
Decision non-significant significant Total
true null U V m0

false null T S m1

m−R R m
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False Discovery Rate

• FDR (False Discovery Rate) is a popular type I error rate for multiple testing
problems.

• FDR is defined as E[V/R], the the expected proportion of the number of falsely
rejected hypotheses among total number of rejected hypotheses.

• Benjamini and Hochberg (1995) finds the maximal k such that p(k) ≤ (k/m)α
where p(1), . . . , p(m) are the ordered p-values.

• Benjamini and Hochberg (1995) is known to control

FDR ≤ m0

m
α = π0α ≤ α

.

• Effective estimations of π0 can give more powerful results. (SAM, pFDR, Adap-
tive Benjamini-Hochberg etc)
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Motivation

How do pairwise correlations affect the result of multiple testing problem?

1. Simulate ’general’ dependence circumstances to see the correlation effects to FDR.

2. Examine the validity of various FDR implementations.
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Modeling general dependence circumstances is difficult.

• Arbitrary pairwise correlations do not guarantee positive definiteness of correla-
tion matrix.

• Equicorrelated model(single or block diagonal structure): simple, easy to under-
stand but not realistic.

• Simple generation of random correlation matrices: too general and hard to com-
pare.

Conditional independence structures in random correlation matrices are consid-
ered as a measure of dependence.(Whittaker (1990),Wille et al. (2004),Dobra et al.
(2004))



12

/ department of mathematics and computer science

Generating constrained random correlation matrices

Goal: Generate a sequence of “nested” random correlation matrices with conditional
independence structures.

Conditional independence: When X = (X1, . . . , Xm)T ∼ Nm(µ, Σ),

Xi ⊥⊥ Xj | {the rest variables} if and only if [Σ−1]ij = 0.

Example: When m = 4, maximally 7 “nested” random correlation matrices can
be considered according to the proportions of non-zero partial correlations. Each
random correlation matrices can be described by graphs.
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Graphical representations of conditional independence structures

(a) d = 0/6 = 0 (b) d = 1/6 (c) d = 2/6 (d) d = 3/6 (e) d = 4/6 (f) d = 5/6 (g) d = 6/6 = 1

Inverse correlation matrices (* : non-zero elements)
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Example: Construction of random correlation matrix with given structure

1. GenerateZ = [z1 z2 z3 z4]where zi isM -dimensional standard normal vector(M >

m = 4).

2. z̃1 = z1.

3. z̃2 = z2.

4. z̃3 = z3 − P3z3 where P3 = z̃1(z̃
T
1 z̃1)

−1z̃T
1 .

5. z̃4 = z4 − P4z4 where P4 = [z̃1 z̃2 z̃3]([z̃1 z̃2 z̃3]
T [z̃1 z̃2 z̃3])

−1[z̃1 z̃2 z̃3]
T .

6. Let Z̃ = [z̃1 z̃2 z̃3 z̃4]. Then Σ = (Z̃T Z̃)−1 is a random covariance matrix with
constraint matrix J .
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Controlling average correlation by M parameter

For unrestricted random covariance matrices, that is, ZM×m = Z̃, the expectation
and the variance of pairwise correlation of random correlation matrices are

E(ρij) = O((M −m + 2)−2),

var(ρij) =
1

M −m + 2
+ O((M −m + 2)−2).

If var(ρij) is small enough, we may expect the dependence structure of correlation
matrix is almost same as the independence case.

By controlling M , we can also control overall “correlation strength” of a random
correlation matrix.
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Simulation scheme

Purpose of this simulation is to investigate the effects of correlations for two-sample
unpaired case.

1. Find c satisfying FDR(c) = α under independence assumption.

2. Generate random correlation matrices Σ1, . . . , Σd from given structures.

3. For each Σj, X1, . . . , Xn1
∼ Nm(µX , Σj) and Y1, . . . , Yn2

∼ Nm(µY , Σj).

4. Apply various multiple testing methods to these data and compare their results
of FDR, FNR and π0 estimates.

Note FNR = E[(m1 − S)/(m−R)] (Genovese and Wasserman (2002)).
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Conclusions

1. Our simulation set-up allows for a structural study of the effect of dependencies
on multiple testing criterions.

2. Most conventional implementations work well under independence assump-
tion, but in the dependence conditions, they overestimate or underestimate FDR.

3. Benjamini-Hochberg type methods seem most robust in the dependence cir-
cumstances.

4. Adaptive methods are more powerful but estimates of π0 depend on the depen-
dence.
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