Two-Stage Designs for proteomic and gene expression studies applying methods differing in costs

Alexandra Goll Peter Bauer

Section of Medical Statistics Medical University of Vienna

supported by FWF-Fund Nr. P18698-n15

Multiple Comparison Procedures Vienna 2007

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation

Single-stage designs

Single-stage designs have low power to detect existing effects when a large number of hypotheses is tested.

Two-stage designs

Two-stage designs are a good option to improve the power:

- Pilot Design: The final test decision is only based on the second stage data.
- Integrated Designs: The final test decision is based on the pooled observations over both stages.

< ロ > < 同 > < 回 > < 回 >

Two-Stage-Designs

Two-Stage-Designs

Screen for promising hypotheses in the first stage which are further investigated in the second stage:

- Limit of resources: total costs C are fixed
- A fraction r of the resources C is used in the first stage for screening
- The remaining resources (1 r)C are used for second stage

In Genomic or Proteomic studies ...

Scenario 1: Different costs

Different costs per observation may arise at both stages:

- costs per observation in the first stage set to $c_1 = 1$
- cost ratio between stages c₂ > 1

Scenario 2: Different costs and effect sizes

There is an increasing focus on using a less accurate assay in early stages and a more accurate one in later stages:

- cost ratio c₂ > 1
- effect size ratio between stages k > 1

< 回 > < 三 > < 三 >

The Two-Stage Design: Scenario 1

Test decision: Reject H_i : $p_{i2} < \gamma_2$

• • • • • • • • • • • •

effect size Δ

The Two-Stage Design: Scenario 2

effect size $k\Delta$

Test decision: Reject H_i : $p_{i2} < \gamma_2$

• • • • • • • • • • • •

Test Problem:

Consider

 m_1 hypotheses for the mean of independent normally distributed observations μ_i with known variance σ^2

 $H_{0i}: \mu_i = 0$ versus $H_{1i}: \mu_i > 0$ $i = 1, ..., m_1$

assuming independence of observations across hypotheses

< ロ > < 同 > < 回 > < 回 >

Scenario 1: Example

Consider an experiment with

- $m_1 = 1000 \dots$ number of hypotheses tests
- C = 20000 ... fixed total costs (limit of resources)

Given

- $\pi_0 = 0.99 \dots$ proportion of true null hypotheses among all m_1 hypotheses
- $\Delta = 0.75 \dots$ effect size

Control level $\alpha = 0.05$:

- FWE: probability of at least one Type I Error
 → Bonferroni Adjustment
- FDR: expected proportion of Type I Errors among the rejected hypotheses → Storey's procedure

Scenario 1: Example

Single-stage designs

Distribute total costs equally among the hypotheses: 20000/1000 = 20 observations per hypothesis test

Two-stage designs

The power (expected fraction of correctly rejected alternatives) is optimized with respect to:

- r .. fraction of total costs used in the first stage
- γ_1 ...selection boundary after first stage

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Asymptotic optimal designs $C = 20000, m_1 = 1000, \Delta = 0.75, \alpha = 0.05, \pi_0 = 0.99, c_2 = 5$

Goll, Bauer (IMS)

Asymptotic optimal designs

 $C = 20000, m_1 = 1000, \Delta = 0.75, \alpha = 0.05, \pi_0 = 0.99, c_2 = 15$

Goll, Bauer (IMS)

Break Even Point in Cost Ratio

If the cost ratio c_2 increases, the power of the two-stage design decreases.

Question

Is there a cost ratio c_2^* , where it does not make sense to apply a two-stage design as compared to the single-stage design?

Integrated design

 c_2^* does not exist:

The power of the asymptotic optimal integrated design

- is always larger than of the corresponding single-stage design.
- converges to the power of the single-stage design $(\lim_{c_2\to\infty}r=1)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Break Even Point: Pilot Design $C = 20000, m_1 = 1000, \pi_0 = 0.99, \alpha = 0.05$

Goll, Bauer (IMS)

Vortrag MCP 13 / 23

Impact of Design Misspecifications

Whereas costs are usually known a priori the optimal designs depend on the unknown parameters π_0 and Δ .

Is there an amount of misspecification where it would have been better to use a single-stage design?

Example

- *C* = 20000
- *m*₁ = 1000
- *c*₂ = 15

r and γ_1 planned for the situation:

- $\pi_0 = 0.99$
- Δ = 0.75

Difference of power values between the two-stage designs and the corresponding single-stage designs (Control of FWE:)

X ... point for which two-stage design parameters are optimized 4 ... >

Goll, Bauer (IMS)

Two-Stage Designs	V
-------------------	---

- The integrated design is more robust against design misspecifications
- if the planned π₀ is larger than the true one: loss of power as compared to the single-stage design
- if the planned π₀ is smaller than the true one: increase of power as compared to the single-stage design

Scenario 2

The experimenter has two different candidate methods for the measurements from the very beginning:

- low-cost standard method: effect size= Δ costs per observation = 1
- high-cost improved method: effect size= k∆ costs per observation > 1
- cost ratio between methods c₂ > 1
- effect size ratio between methods *k* > 1

Two-Stage Procedures

- first stage: low second stage: low
- first stage: low second stage: high
- first stage: high second stage: high

Pilot Design controlling the FWE

Consider an experiment with

- $\alpha = 0.05$
- $C = 20000, m_1 = 1000$
- low-cost method: effect size $\Delta = 0.5$
- high-cost method: k = 4 effect size: 0.5 * 4 = 2

Question

Looking at different values for c_2 : Which of the 3 procedures has the maximal Power?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scenario 2

Example

Common crossing point at $c_2 = k^2 = 16$

2

< 6 b

Scenario 2

Example

Common crossing point at $c_2 = k^2 = 16$

< E

< 6 b

Examples:

		Example 1:	Example 2:
Procedure		$c_2 = 5$	<i>c</i> ₂ = 15
low-low	Power	0.594	0.594
	<i>n</i> 1	pprox 13	pprox 13
low-high	Power	0.805	0.605
	<i>n</i> ₁	pprox 10	pprox 13
high-high	Power	0.983	0.625
	<i>n</i> ₁	pprox 3	< 1

イロト イヨト イヨト イヨト

Conclusions

Different costs in both stages

Two-stage designs are a good option to improve the power even if the cost ratio between stages c_2 is fairly high.

Misspecification

- The integrated design is more robust against misspecification than the pilot design.
- Optimism in the planning phase with regard to the number of true alternatives may help to avoid loss of power.

If two different methods are available

- Depending on *c*₂ and *k* it is preferable to run two-stage designs which apply either the low-cost or the high-cost method at both stages.
- Switching from the low-cost to the high-cost method may only be advisable if there is lack of finance so that *n*₁ for the high-cost method is to small.

Selected References

Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Statist. Soc. B*, 57, 289-300.

Goll,A, Bauer,P (2007) Two-stage designs applying methods differing in costs. *Bioinformatics, to appear.*

- Satagopan,JM et al. (2004) Two-stage designs for gene-disease association studies. *Biometrics*, 58, 163-170.
- Storey, JD (2002) A direct approach to false discovery rates. *J. R. Statist. Soc. B*, 64, 479-498.

Storey, JD, Taylor, JE, Siegmund, D (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *J. R. Statist. Soc. B*, 66, 187-205.

Wang,H et al. (2006) Optimal two-stage genotyping designs for genome-wide association scans, *Genetic Epidemiology*, 30, 356-368.

Zehetmayer,S, Bauer,P, Posch,M (2005) Two-stage designs for experiments with a large number of hypotheses. *Bioinformatics*, 21, 3771-3777.

Goll, Bauer (IMS)