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The False Discovery Rate (FDR)

The false discovery rate (FDR) is the expected value of the
proportion of false positives (Vn) among the rejections made
(Rn), with the convention that Vn/Rn = 0 if Rn = 0.

FDR ≡ E
[

Vn

Rn

]
= E

[
Vn

Rn

∣∣∣Rn > 0
]

Pr(Rn > 0). (1)

Most common procedures for controlling the FDR:
1 Focus on the marginal distribution of test statistics.
2 Rely on assumptions about the distribution of test statistics.

OUR GOAL Present a powerful procedure which accurately
controls Type I error by taking into account the joint distribution
of test statistics while placing as as few assumptions as
possible on the data generating or test statistics distributions.

Houston N. Gilbert, Sandrine Dudoit, Mark J. van der Laan Resampling-Based Empirical Bayes MTPs



FDR Background
Our Proposed Method

Simulation Study
Application: Genetic Linkage Study of Gene Expression

Motivation and Definition
Common Procedures
q-values

FDR-Controlling Procedures
Adjusted p-value representations

Let P0n(On(1)) ≤ . . . ≤ P0n(On(M)) denote the marginal
ordered unadjusted p-values corresponding to M hypothesis
tests. The adjusted p-value for the mth ordered test statistic is
given by:

Benjamini-Hochberg (1995), marginal, step-up procedure:

P̃0n(On(m)) = min
h=m,...,M

{
min

{
M
h

P0n(On(h)),1
}}

. (2)

Benjamini-Yekutieli (2001), marginal, step-up, “distribution-free”
procedure:

P̃0n(On(m)) = min
h=m,...,M

{
min

{
C(M)

M
h

P0n(On(h)),1
}}

, (3)

where C(M) =
∑M

m=1
1
m ≈ log(M).
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Other FDR-Controlling Procedures

Benjamini-Hochberg (2000), adaptive procedure
Yekutieli-Benjamini (1999), p-value resampling-based
procedure
Abramovich et al. (2000), for unknown sparsity in
regression
Sarkar (2002), finite-sample stepwise procedure results
Bayesian pFDR “fixed rejection region” procedure, i.e.,
“q-value” (cf. Efron, Tibshirani, Storey 2001-2004)
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q-values

We assume that the test statistics share a common marginal
non-parametric mixture distribution, i.e.,

Tn(m) ∼ f = π0f0 + (1− π0)f1, m = 1, ...,M, (4)

π0 = Pr(H0(m) = 1) is the prior probability of belonging to the
set of true nulls, H0,

f0 represents the marginal null density, Tn(m)|{H0(m) = 1} ∼ f0,

f1 represents the marginal alternative density,
Tn(m)|{H0(m) = 0} ∼ f1.

“Local q-values”: Posterior probabilities of belonging to the set of true
null hypotheses given the value of a test statistic:

π0(t) ≡ Pr(H0(m) = 1|Tn(m) = t) =
π0f0(t)

f (t)
, m = 1, . . . ,M. (5)
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q-values

q-values are “Bayesian p-values”.
One typically estimates the prior probability π0 of a
hypothesis being true.
Storey and colleagues propose at least two methods for
estimating this prior from a common marginal mixture
distribution of test statistics (see previous).

The q-value for the mth ordered p-value is given by:

P̃0n(On(m)) = min
{
π̂0MP0n(On(m))

m
, P̃0n(On(m + 1))

}
, m = 1, . . . ,M

(6)
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Resampling-Based Empirical Bayes MTPs - PROs

Seek to gain power by using random guessed sets of true null
hypotheses vs. conservatively setting H0 = {1, . . . , M}. We do not
assume the complete null hypothesis.

Based on a test statistics joint null distribution.*

Applicable to general data generating distributions with arbitrary
dependence structures among variables.

No assumptions about independence, pos. reg’n. dependence,
ergodic dependence, dependence in finite blocks, etc.
Do not rely on subset pivotality condition of Westfall and Young.

Do not require estimation of a prior probability (can use most
conservative prior of 1).*

Work for arbitrary tail probability and expected value error rates. The
FDR is only one error rate that can be controlled using this methodology
(e.g., gFWER-k , TPPFP-q, etc.).

Intuitive structure lends itself to transparent software implementation.

Houston N. Gilbert, Sandrine Dudoit, Mark J. van der Laan Resampling-Based Empirical Bayes MTPs



FDR Background
Our Proposed Method

Simulation Study
Application: Genetic Linkage Study of Gene Expression

Simulation Study Design
Numerical Simulation Results
Graphical Simulation Results
Further Simulation Results

Simulation Design
The BH, QV and EB procedures were compared in a simulation study testing
two-sided null hypotheses for difference of means. Test statistics (effect
sizes) were sampled directly (MVN, B = 10, 000).

Number of null hypotheses, M ∈ {24, 400, 2000}.
Proportion of true null hypotheses, ho/M ∈ {0.50, 0.75, 0.95, 1}.
Alternative test statistic shift parameters, dn(m) ∈ {2, 3}.
Correlation matrix, σ∗:

Independent, σ∗ = IM , the M ×M identity matrix.
Constant, σ∗ same as above, with σ∗

ij = 0.5, i 6= j .
Empirical, σ∗ a random M ×M submatrix of the genes × genes
correlation matrix for a publicly available microarray data set
(Golub 1999).

Estimated test statistics null distributions, Q0n and Q̆0n: Both the null
shift and scaled-transformed and null quantile-transformed test statistics
null distributions were implemented (including for marginal procedures).
“Best Case” Controls. Allow BH and EB to know the proportion of true
nulls, h0/M.
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Numerical Simulation Results

h0/M BH-TIE BH-P QV-TIE QV-P EB-TIE EB-P
Independent

0.95 0.080 0.042 0.086 0.042 0.055 0.034
0.75 0.039 0.130 0.048 0.162 0.043 0.146
0.50 0.025 0.224 0.045 0.342 0.036 0.296

Constant
0.95 0.027 0.057 0.052 0.084 0.025 0.088
0.75 0.040 0.157 0.070 0.188 0.039 0.219
0.50 0.045 0.262 0.070 0.347 0.048 0.378

Empirical
0.95 0.038 0.062 0.049 0.071 0.038 0.076
0.75 0.036 0.139 0.050 0.173 0.042 0.175
0.50 0.024 0.231 0.046 0.339 0.036 0.319

Table 1: Simulation Study – Average TIE and power of the BH, QV and EB
FDR-controlling procedures over A = 250 data sets, M = 2000 hypotheses, mean shift
dm = 2, controlling at nominal level α = 0.05. TIE = Type I error, P = Power. Results
are based on the null shifted and scaled test statistics null distribution.
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Graphical Simulation Results - Type I Error
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Figure 1: Simulation Study – Type I error control comparison: M = 24 and M = 2000
hypotheses, proportion of true nulls h0/M = 0.75, mean shift dm = 2. Performance of
BH, QV and EB FDR-controlling procedures under the null shifted and scaled test
statistics null distribution. Lines above the horizontal represent conservative behavior.
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Graphical Simulation Results - Power
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Figure 2: Simulation Study – Power comparison: M = 24 and M = 2000
hypotheses, proportion of true nulls h0/M = 0.75, mean shift dm = 2. Performance of
the QV and EB FDR-controlling procedures relative to BH under the null shifted and
scaled test statistics null distribution. Lines above the horizontal represent more
powerful procedures when benchmarked against actual Type I error rate.
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BH is robust to a variety of conditions, but becomes
conservative as h0/M decreases (as expected).
QV performs quickly and competitively when assumptions
hold, fails under high correlation and small M.
EB performs consistently well, particularly for small M,
high correlation, high h0/M.
EB results in fewer “0/0” instances (more rejections).
EB performs slightly better in terms of the spread of the
FDR estimate across simulated data sets.
EB controls TIE under the complete null hypothesis at the
same or similar rates as vanilla (non-EB) FWER and
FDR-controlling procedures (Bonferroni, ssmaxT, BH, QV,
etc., as well as EB-ssmaxT). Higher M might require more
bootstrap replicates, B.
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Genetic Cross Experiment in S. cerevisiae

Data are from a genetic cross experiment between a lab strain
and a wild isolate of Saccharomyces cerevisiae (Brem et al.,
2005), for n=112 segregants (progeny).

Phenotypes of interest are gene expression levels themselves.
6,215 cDNA microarray gene expression measures (ψ).

Genotypes are biallelic (0/1) SNPs. 2,957 positions covering ca.
95% of the genome.

“Two-dimensional” multiple testing problem. In practice, one
dimension is often reduced, pooled or completely ignored.

Potential loss of information for complex genetic traits!

Ideally, we would identify significant sets of genotypes
associated with sets of phenotypes.

Houston N. Gilbert, Sandrine Dudoit, Mark J. van der Laan Resampling-Based Empirical Bayes MTPs



FDR Background
Our Proposed Method

Simulation Study
Application: Genetic Linkage Study of Gene Expression

Experimental Design
Preliminary Results

Chromosome ATP7 ATP15 COX4 COX6
IIa QV, EB EB
IIb EB EB(2)
III EB(2)
IV EB BH, QV(3), EB(8)
V EB EB

VIIa EB
VIIb EB
VIII BH, QV, EB QV, EB QV, EB
XVI QV, EB(2) QV, EB(2) QV, EB QV, EB(2)

Table 2: Comparative linkage results for individual genes of interest over 1,181
informative SNPs using the BH, QV and EB FDR-controlling procedures. Adjp < 0.25
for two-sample t-tests using the N(0, 1) null quantile-transformed test statistics null
distribution. Numbers in parentheses () indicate the number of markers called
significant on a given chromosome (if greater than one).

For each gene displayed, EB finds more markers in regions within a
chromosome as well as more markers on different chromosomes
than the other two methods.
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Summary and Future Work

EB MTPs provide a general, flexible methodology for
controlling a large class of Type I error rates.
EB-FDR procedure exhibits a positive trade-off between
TIE control and power across a variety of conditions.
Promise in high correlation setting should be of practical
interest to researchers in several fields.
Attempting to define parameters to account for
“two-dimensional” genotype/phenotype testing problems,
graphical structure, etc. Data adaptive approaches for
identifying sets of associated phenotypes and genotypes
(transcripts and SNPs).
Structure allows for transparent software development -
COMING SOON!
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