Relative Potency Estimations in Multiple Bioassay Problems

Gemechis Dilba

Institute of Biostatistics, Leibniz University of Hannover, Germany

5th International Conference on Multiple Comparison Procedures

July 2007, Vienna
1. Introduction

2. Parallel–Line Assay

3. Simultaneous CI

4. Example

5. Remarks
Relative potency estimation is quite a standard problem in bioassays.

- Relative strength of a standard drug versus test drug(s)
- Parallel-line and slope-ratio assays
- Inferences for ratios of coefficients in the general LM
Aims:

- Ratio-based comparisons with a control in a normal one-way layout (Dilba et al., 2006)
- Mention applications in the general LM
- Relative Potency Estimations in Parallel-Line Assays
- Method Comparisons & Some Extensions
Model (2 preparations):

\[Y_{ij} = \alpha_i + \beta D_{ij} + \epsilon_{ij}, \quad i = 0, 1; \quad j = 1, \ldots, n_i \]

\[\theta = (\alpha_0 \quad \alpha_1 \quad \beta)' \]

Relative potency:

\[\gamma = \frac{\alpha_1 - \alpha_0}{\beta} = \frac{(-1 \ 1 \ 0)\theta}{(0 \ 0 \ 1)\theta} \]

Fieller confidence interval
Multiple Assays

\[Y_{ij} = \alpha_i + \beta D_{ij} + \epsilon_{ij}, \quad i = 0, \ldots, r; \quad j = 1, \ldots, n_i \]

- Relative potencies

\[\gamma_i = \frac{\alpha_i - \alpha_0}{\beta}, \quad i = 1, \ldots, r \]

- Simultaneous CI for ratios of linear combinations of general LM coefficients

(Zerbe et al., 1982; Jensen, 1989; Dilba et al., 2006; Hare and Spurrier, 2007)
Simultaneous CI for Ratios in the GLM

- Model: \(Y = X\theta + \epsilon \)

- Parameters of interest

\[
\gamma_\ell = \frac{c_\ell^t \theta}{d_\ell^t \theta}, \quad \ell = 1, 2, \ldots, r
\]

- When \(r = 1 \), Fieller CI
SCI for Multiple Ratios

\[Y = X\theta + \epsilon \]

- Parameters: \(\gamma_\ell = \frac{c'_\ell \theta}{d'_\ell \theta}, \quad \ell = 1, 2, \ldots, r \)

- Let \(L_\ell = (c_\ell - \gamma_\ell d_\ell)\hat{\theta} \), then
 \[
 T_\ell(\gamma_\ell) = \frac{L_\ell}{s_{L_\ell}} \sim t(\nu) \\
 (T_1, \ldots, T_r)' \sim Mt_r(\nu, R(\gamma))
 \]

- \(Mt_r(\nu, R(\gamma)) \) and hence \(C_{1-\alpha, R(\gamma)} \) depends on \(\gamma \)!
In a parallel-line assay with **one standard** and **two test** preparations

- $\theta = (\alpha_0, \alpha_1, \alpha_2, \beta)$

Relative potencies: $\gamma = \left(\frac{\alpha_1 - \alpha_0}{\beta}, \frac{\alpha_2 - \alpha_0}{\beta}\right)'$

Test statistics:

$$T_i(\gamma_i) = \frac{(\hat{\alpha}_i - \hat{\alpha}_0) - \gamma_i \hat{\beta}}{s \sqrt{a_i'(X'X)^{-1}a_i}} \sim t(\nu), \quad i = 1, 2$$

where $a_1 = (-1, 1, 0, -\gamma_1)$ and $a_2 = (-1, 0, 1, -\gamma_2)$
In a parallel-line assay with **one standard** and **two test** preparations

- \(\theta = (\alpha_0, \alpha_1, \alpha_2, \beta) \)

Relative potencies: \(\gamma = \left(\frac{\alpha_1-\alpha_0}{\beta}, \frac{\alpha_2-\alpha_0}{\beta} \right)' \)

Test statistics: \(T_i(\gamma_i) = \frac{(\hat{\alpha}_i-\hat{\alpha}_0) - \gamma_i \hat{\beta}}{s \sqrt{a'_i (X'X)^{-1} a_i}} \sim t(\nu), \quad i = 1, 2 \)

where \(a_1 = (-1, 1, 0, -\gamma_1) \) and \(a_2 = (-1, 0, 1, -\gamma_2) \)

Jointly, \(T_i(\gamma_i), \ i = 1, 2 \) has a **bivariate** \(t \)-distribution

Correlation: \(\rho = \frac{a'_1 (X'X)^{-1} a_2}{\left[(a'_1 (X'X)^{-1} a_1) (a'_2 (X'X)^{-1} a_2) \right]^{1/2}} \)
Two-sided percentage point of a bivariate t-distribution with $\nu = 20$ and $\rho = 0.6$
Exact Simultaneous confidence sets for γ

- Using $R(\gamma)$ as it is

 \iff Inverting tests point-wise over grids of γ

- Two-sided simultaneous $(1 - \alpha)100\%$ CS

 $\{ \gamma : -C_{1-\alpha,R(\gamma)} \leq T_\ell(\gamma_\ell) \leq C_{1-\alpha,R(\gamma)}, \ell = 1, \ldots, r \}$

- SCSs are not necessarily rectangular
1a. **Bounded** exact two-sided confidence set

\[\hat{\theta} = (\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\beta})' = (10.7, 10.5, 11.7, 2.2)', \ s^2 = 18.4, \ \nu = 41 \ \text{and} \ \mathbf{X}'\mathbf{X} = \begin{bmatrix} 15 & 0 & 0 & 10.4 \\ 0 & 15 & 0 & 10.4 \\ 0 & 0 & 15 & 10.4 \\ 10.4 & 10.4 & 10.4 & 64.86 \end{bmatrix} \]
1b. **Bounded exact two-sided confidence set**

\[\hat{\theta} = (\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\beta})' = (10.8, 11.5, 10.2, 2.5)' \]

\[s^2 = 58.2, \quad \nu = 71 \quad \text{and} \quad X'X = \begin{bmatrix} 25 & 0 & 0 & 13.54 \\ 0 & 25 & 0 & 13.54 \\ 0 & 0 & 25 & 13.54 \\ 13.54 & 13.54 & 13.54 & 71.37 \end{bmatrix} \]
2a. **Unbounded** exact two-sided confidence set

\[\hat{\theta} = (\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\beta})' = (9.2, 8.5, 9.7, 1.6)', \quad s^2 = 28.3, \quad \nu = 41 \text{ and } X'X = \begin{bmatrix} 15 & 0 & 0 & 10.4 \\ 0 & 15 & 0 & 10.4 \\ 0 & 0 & 15 & 10.4 \\ 10.4 & 10.4 & 10.4 & 64.86 \end{bmatrix} \]
2b. **Unbounded** exact two-sided confidence set

\[
\hat{\theta} = (\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\beta})' = (8.6, 10.6, 11.4, 0.9)', \quad s^2 = 9.6, \quad \nu = 41 \text{ and } X'X = \begin{bmatrix}
15 & 0 & 0 & 10.4 \\
0 & 15 & 0 & 10.4 \\
0 & 0 & 15 & 10.4 \\
10.4 & 10.4 & 10.4 & 64.86
\end{bmatrix}
\]
Approximate Simultaneous CI

- *Probability inequalities*
 - Boole’s inequality
 - Šidák (Jensen, 1989)
 - Scheffé (Scheffé, 1970; Zerbe *et al.*, 1982; Young *et al.*, 1997)

- *Estimating* $R(\gamma)$, MLE plug-in (Dilba *et al.*, 2006)

- *Min & Max* of exact SCS (Hare and Spurrier, 2007)
\[A_\ell \gamma_\ell^2 + B_\ell \gamma_\ell + C_\ell \leq 0, \quad \ell = 1, 2, \ldots, r \]

where

\[
A_\ell = (d'_\ell \hat{\theta})^2 - q^2 S^2 d'_\ell M d_\ell
\]
\[
B_\ell = -2 \left[(c'_\ell \hat{\theta})(d'_\ell \hat{\theta}) - q^2 S^2 c'_\ell M d_\ell \right]
\]
\[
C_\ell = (c'_\ell \hat{\theta})^2 - q^2 S^2 c'_\ell M c_\ell
\]
\[
M = (X'X)^{-1}
\]

\[
q = \begin{cases}
 t_{1-\frac{\alpha}{2}} & \text{, Fieller} \\
 t_{1-\frac{\alpha}{2r}} & \text{, Boole's inequality} \\
 C_{1-\alpha, I_r} & \text{, Šidák inequality} \\
 C_{1-\alpha, R(\hat{\gamma})} & \text{, Plug-in}
\end{cases}
\]
Relative Potency Estimation
Software

mratios: R extension package, CRAN: www.r-project.org

- Two-sample (*t.test.ratio*)
 E.g., Fieller CI (homogeneous & hetero. variances)

- One-way layout (*simtest.ratio*)
 E.g., Ratio-based multiple tests for any contrast

- General linear model (*sci.ratio.gen*)
 E.g., Parallel-line & slope-ratio assays, Calibration
Example - Multiple PL Assay

Four animals were subjected to three concentrations of three tuberculin preparations (S, T1, T2). The response is diameter of irritated spots twenty-four hours after application (Finney, 1975; Zerbe et al., 1982).

<table>
<thead>
<tr>
<th>Animal</th>
<th>Stand 1/2500</th>
<th>Stand 1/500</th>
<th>Stand 1/100</th>
<th>Test 1 1/2500</th>
<th>Test 1 1/500</th>
<th>Test 1 1/100</th>
<th>Test 2 1/2500</th>
<th>Test 2 1/500</th>
<th>Test 2 1/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>52</td>
<td>64</td>
<td>45</td>
<td>40</td>
<td>65</td>
<td>33</td>
<td>44</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>48</td>
<td>62</td>
<td>38</td>
<td>42</td>
<td>65</td>
<td>36</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>48</td>
<td>100</td>
<td>45</td>
<td>62</td>
<td>57</td>
<td>33</td>
<td>54</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>52</td>
<td>59</td>
<td>40</td>
<td>42</td>
<td>70</td>
<td>37</td>
<td>61</td>
<td>70</td>
</tr>
</tbody>
</table>
Model:

\[Y_{ijk} = \mu + \tau_i + \alpha_j + \beta D_k + \epsilon_{ijk}, \]

\[i = 1, 2, 3, 4; \quad j = 0, 1, 2; \quad k = 1, 2, 3 \]
Model:

\[Y_{ijk} = \mu + \tau_i + \alpha_j + \beta D_k + \epsilon_{ijk}, \]

\[i = 1, 2, 3, 4; \ j = 0, 1, 2; \ k = 1, 2, 3 \]

\[\gamma_j = (\alpha_j - \alpha_0)/\beta, \quad j = 1, 2 \]

Two-sided 95% simultaneous CI:

<table>
<thead>
<tr>
<th>Method</th>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonferroni</td>
<td>(-0.593, 0.218)</td>
<td>(-0.481, 0.324)</td>
</tr>
<tr>
<td>Šidák</td>
<td>(-0.593, 0.216)</td>
<td>(-0.479, 0.322)</td>
</tr>
<tr>
<td>Plug-in</td>
<td>(-0.585, 0.211)</td>
<td>(-0.474, 0.317)</td>
</tr>
</tbody>
</table>
Model:

\[Y_{ijk} = \mu + \tau_i + \alpha_j + \beta D_k + \epsilon_{ijk}, \]

\[i = 1, 2, 3, 4; \quad j = 0, 1, 2; \quad k = 1, 2, 3 \]

\[\gamma_j = (\alpha_j - \alpha_0)/\beta, \quad j = 1, 2 \]

Two-sided 95% simultaneous CI:

<table>
<thead>
<tr>
<th>Method</th>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonferroni</td>
<td>(-0.593, 0.218)</td>
<td>(-0.481, 0.324)</td>
</tr>
<tr>
<td>Šidák</td>
<td>(-0.593, 0.216)</td>
<td>(-0.479, 0.322)</td>
</tr>
<tr>
<td>Plug-in</td>
<td>(-0.585, 0.211)</td>
<td>(-0.474, 0.317)</td>
</tr>
</tbody>
</table>

Random animal effects
Simultaneous CI for **ratios of fixed effect parameters** in LMM

\[Y_i = X_i \theta + Z_i b_i + e_i, \]

- Asymptotically, \(\hat{\theta} \) is normal and LC of this estimator,

\[U_j = (c_j - \gamma_j d)' \hat{\theta}, \quad j = 1, \ldots, r \]

are asymptotically \(r \)-**variate normal**, \(\mathcal{N}_r(0, \Sigma[\sigma_{ij}]) \), where

\[\sigma_{ij} = \text{cov}(U_i, U_j) = (c_i - \gamma_i d)' \text{var}(\hat{\theta})(c_j - \gamma_j d)' \]

- Estimate of \(\text{var}(\hat{\theta}) \) can be extracted from the fitted LMM
• Plugging the MLEs of γ_is in Σ, equi-coordinate percentage points can be computed for SCI estimations

• Simultaneous CI:

$$\frac{[c_i - \gamma_id]^2}{(c_i - \gamma_id)'\text{var}(\hat{\theta})(c_i - \gamma_id)'} = C_{1-\alpha, \hat{\Sigma}}^2$$
Remarks

- Software is available for *simultaneous inferences for ratios* of coefficients in the general LM

- The plug-in approach has **good coverage**

- **Extension to** linear mixed models with possible improvements over existing conservative approaches

