Multiple Testing in Change-Point Problem with Application to Safety Signal Detection

Jie Chen
Merck Research Laboratories
E-Mail: jie_chen@merck.com

The 5th International Conference on Multiple Comparison Procedures
Vienna, Austria
July 11, 2007
Overview

Introduction
 Concept/applications
 Classification
 Methods

Change-Point Analysis
 One changepoint
 Multiple Changepoints

Multiple Testing
 Šidák inequality
 Closure principle
 Proposed method

Two-Sequence Change-Point Problem

Example
 Example

Summary
Introduction

- Change-point analysis concerns with the inference on the point(s) in a sequence of random process at which the distribution changes

- Applications
 - Statistical quality control – Online detection of changes in quality operations
 - Public Health – Sequentially monitoring the number of cases of a disease for potential outbreak
 - Medicine – Post-marketing surveillance, dose-finding
 - Biomedical signal processing – Online detection of biomedical signals such as Electroencephalogram (EEG) and electrocardiogram (ECG)
 - Meteorology – Global warming
 - Finance – Detection of business cycles
 - Seismology
Introduction (2)

Classifications of change-point analysis

- Continuous versus discrete
- Retrospective (fixed sample) versus prospective (online sequential)
- Parametric versus non-parametric
- Frequentist versus Bayesian
- One change-point versus multiple change-points
Introduction (3)

Statistical methods for change-point analysis

- Likelihood ratio procedures for parametric models
- Non-parametric methods – Mann-Whitney U test, Wilcoxon rank test
- Regression-based methods (including curve fitting)
- Cumulative sum (CUSUM) methods
- Bayesian analysis and its variations
- Sequential methods
- Information criterion
- Wavelet transformation
One Change-Point Problem (1)

- Let \((X_1, \ldots, X_T)\) be a sequence of independent random variables, ordered in time interval, each with density function \(f(X_i | \mu_i)\) where \(E(X_i) = \mu_i, i = 1, \ldots, T\).

- Consider the model for one change-point in means at time interval \(\tau\).

- The null hypothesis

\[
H_0 : \mu_1 = \ldots = \mu_T
\]

against

\[
H_1 : \mu_1 = \ldots = \mu_\tau \neq \mu_{\tau+1} = \ldots = \mu_T
\]

for an unknown \(\tau\).
One Change-Point Problem (2)

- Let $\mu_1 = \ldots = \mu_\tau = \mu'_0$ with known μ'_0 before the change-point τ and $\mu_{\tau+1} = \ldots = \mu_T = \mu'_1$ with known μ'_1 after the change-point. Then the log likelihood function is

$$
\ell(\tau) = \sum_{i=1}^{\tau} \log f(X_i | \mu'_0) + \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_1) \quad (1)
$$

- The log likelihood ratio test statistic for testing H_0 against H_1 is

$$
\log \ell(\tau) = \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_0) - \sum_{i=\tau+1}^{T} \log f(X_i | \mu'_1) \quad (2)
$$
One Change-Point Problem (3)

- Traditionally, the null hypothesis H_0 of no change-point against H_1 of one change-point over the T time intervals is rejected if

$$2 \sup_{\tau} \log \ell(\tau) > \chi^2_{\alpha,1} \tag{3}$$

- The MLE $\hat{\tau}$ of τ is obtained by maximizing (1)

- When μ'_0 and μ'_1 are unknown, the MLE’s $\hat{\mu}'_0$, $\hat{\mu}'_1$ and $\hat{\tau}$ can be obtained by simultaneously maximizing (1) w.r.t. μ'_0, μ'_1 and τ
Multiple Change-Points (1)

- The test continues sequentially for testing \(H_{m-1} \) of \(m - 1 \) change-points against \(H_m \) of \(m \) change-points, \(m = 1, \ldots, T - 1 \), until an acceptance occurs.

- That is, the test starts from \(m = 0 \) (against \(m = 1 \)) towards \(m = T - 1 \).

\[
H_0 : \quad \mu_1 = \ldots = \mu_T \\
H_1 : \quad \mu_1 = \ldots = \mu_T \neq \mu_{T+1} = \ldots = \mu_T \\
H_2 : \quad \mu_1 = \ldots = \mu_{\tau_1} \neq \mu_{\tau_1+1} = \ldots = \mu_{\tau_2} \neq \mu_{\tau_2+1} = \ldots = \mu_T \\
\vdots \quad \vdots \\
H_{T-1} : \quad \mu_1 \neq \ldots \neq \mu_T
\]
Multiple Change-Points (2)

- Binary segmentation (Vostrikova 1981)
 - Test for no change point H_0 against one change-point H_1
 - If H_0 is rejected, test the two subsequences before and after the change-point identified in the above step separately for a change
 - Repeat the process until no change-points are found in any of the subsequences
 - The collection of change-points identified from the above steps are $\{\hat{\tau}_1, \ldots, \hat{\tau}_k\}$ and the estimated number of change-points is then k
A hierarchy of sub-hypothesis tests (Hogg 1961)

- Let \(\Omega \) denote the total parameter space and \(\Omega^* \) a subspace of \(\Omega \).
- It is desired to test \(H'_0 : \theta \in \Omega^* \) against \(H'_1 : \theta \in \Omega - \Omega^* \).
- Suppose there are certain intermediate hypotheses. Let \(\Omega_i \) be a subset of \(\Omega_{i-1} \), \(i = 1, \ldots, t - 1 \), such that
 \[
 \Omega = \Omega_0 \supset \Omega_1 \supset \ldots \supset \Omega_{t-1} = \Omega^*
 \]
 where each \(\Omega_i \) corresponds to an intermediate hypothesis.
- Testing \(H'_0 \) against \(H'_1 \) can be carried out by iteratively testing the following hypotheses:
 \[
 H'^i_0 : \theta \in \Omega_i \text{ versus } H'^i_1 : \theta \in \Omega_{i-1} - \Omega_i,
 \]
 \(i = 1, \ldots, t - 1 \).
A hierarchy of sub-hypothesis tests (cont’d)

- To test H'_0 against H'_1, we first test

\[H_0^1 : \theta \in \Omega_1 \text{ against } H_1^1 : \theta \in \Omega_0 - \Omega_1 \]

- If H_0^1 is accepted, we then test

\[H_0^2 : \theta \in \Omega_2 \text{ against } H_1^2 : \theta \in \Omega_1 - \Omega_2 \]

- In general, if H_0^{i-1} is accepted, we continue to test

\[H_0^i : \theta \in \Omega_i \text{ against } H_1^i : \theta \in \Omega_{i-1} - \Omega_i \]

- H'_0 is rejected if any one of H_0^1, \ldots, H_0^{t-1} is rejected

- H'_0 is accepted if and only if all of H_0^1, \ldots, H_0^{t-1} are accepted
Multiple Testing in Change-Point Analysis (1)

- “If you torture the data long enough, it will confess anything you want” – Nobel Laureate Ronald Coase
- Generalized likelihood ratio (GLR) test
 - Let \(\lambda_i = \frac{L(\hat{\Omega}_i)}{L(\hat{\Omega}_{i-1})} \) be the likelihood ratio for testing \(H^i_0 \) against \(H^i_1 \), \(i = 1, \ldots, t - 1 \)
 - The GLR for \(H'_0 \) against \(H'_1 \) is given by
 \[
 \lambda = \frac{L(\hat{\Omega}_{t-1})}{L(\hat{\Omega}_0)} = \prod_{i=1}^{t-1} \frac{L(\hat{\Omega}_i)}{L(\hat{\Omega}_{i-1})} = \prod_{i=1}^{t-1} \lambda_i \tag{4}
 \]
 - The \(\lambda_i \)'s are mutually stochastically independent test statistics
 - Significance level for each test \(\alpha_i = 1 - (1 - \alpha)^{1/(t-1)} \), where \(\alpha \) is the family-wise type I error rate
Multiple Testing in Change-Point Analysis (2)

Closure principle

- Suppose \(T = 4 \), then there exist at most \(m = 3 \) change-points.

Reformulation of the \(H_i \)'s

\[
H_0 : \{ \mu_1 = \mu_2 = \mu_3 = \mu_4 \}
\]

\[
H_1 : \{ \mu_1 = \mu_2 = \mu_3 \}, \{ \mu_2 = \mu_3 = \mu_4 \}, \{ \mu_1 = \mu_2 \} \cap \{ \mu_3 = \mu_4 \}
\]

\[
H_2 : \{ \mu_1 = \mu_2 \}, \{ \mu_2 = \mu_3 \}, \{ \mu_3 = \mu_4 \}
\]

\[
H_3 : \{ \mu_1 \}, \{ \mu_2 \}, \{ \mu_3 \}, \{ \mu_4 \}
\]

- This forms the closure of the family by taking all possible intersections

- The closed family resembles the one that is formed for all pair-wise comparisons, but much smaller; it consists of hypotheses of homogeneity of successive means and their intersections
Multiple Testing in Change-Point Analysis (3)

- Reject a subset homogeneity hypothesis H_K at level $\alpha_k = \alpha k / t$
- Retain H_K at level α
- Otherwise, if H_K is rejected at level α but not at level α_k, then H_K is rejected if every hypothesis H_R that concerns means in the complement of K is rejected at level α_r
Proposed modification of the above closed test procedure

- **Reject** H_0^i
 - If Ω_i is not contained in any accepted set, and
 - If H_0^i is rejected at level $\alpha_i = 1 - (1 - \alpha)^{(t-1-i)/(t-1)}$

- **Retain** H_0^i
 - If Ω_i is contained in another accepted set, or
 - If H_0^i is not rejected at level $\alpha_i = 1 - (1 - \alpha)^{(t-1-i)/(t-1)}$
Two-Sequence Change-Point Problem

- Suppose that there are two independent sequences of random processes X_{i1} and X_{i2}, with $X_{ij} \sim f(\mu_{ij}), i = 1, \ldots, T$ and $j = 1, 2$

- The question of interest is whether there are an abrupt change in the ratios of the two random variables across the time period

- Let $\gamma_i = \mu_{i1}/\mu_{i2}, i = 1, \ldots, T$. Then this is equivalent to simultaneously testing the null hypotheses

 $$H_0 : \gamma_1 = \ldots = \gamma_T$$

 against $H_1 :$ there is at least one change point
Pharmacovigilance and Post-Marketing Safety Surveillance

- An integrated part of biopharmaceutical development
- Activities involve in detection, assessment, understanding and prevention of adverse effects and any drug-related problems
- Pharmacovigilance plan (PvP)
 - As part of Marketing Authorization Application, the PvP must be prepared in compliance with regulatory request on potential safety impact of product modification
 - The PvP describes routine pharmacovigilance practice, as well as special action plan including Post-marketing Safety Surveillance Analysis (PSSA)
 - The PSSA will evaluate all potential safety signals, with special attention to proportional change of a particular adverse event (system) over time
An Example (2)

PSSA

- Uses spontaneous reporting databases (AERS, VAERS, company’s spontaneous reporting databases, etc.) and other epidemiological studies

- Data mining tools – Empirical Bayes, neural network, etc.

- Proportional change over time – useful to detect the impact of drug modification on the reporting of a particular (body system) adverse experience. For example,
 - Name change
 - Combination of two or more independent vaccines
 - New technology \Rightarrow manufacturing process change
 - ...
Figure 1: AE reporting rates for autoimmune SOC and other SOC’s
Estimates of the number of change-points:

- All computations are carried out using compiled R functions and SAS® macros
- No multiplicity adjustment
 - Each tested at $\alpha = 0.05$
 - 4 change-points: 3, 4, 9, and 17
- Šidák inequality
 - Each tested at $\alpha^* = 1 - (1 - 0.05)^{1/19} = 0.0027$
 - 1 change-point: 17
- Proposed method
 - Each λ_i is tested at $0.05 \times (19 - i)/19$
 - 2 change-points: 3 and 17
Summary

- Exact method for computing rejection probabilities
- Simulations
- Constant rate within interval
- Multivariate change-point problem
- Sequential or online change-point problem
- Continuous-time estimate of change-point
- Bayesian attempt
- Potential biases in post-marketing spontaneous data reporting