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Steady-State Simulation

A goal of steady-state simulation is to

compare the limiting behaviors of several

ergodic stochastic processes. Finding the

service system that minimizes long-run

average customer delay in queue is an

example.

Because the simulation cannot be initialized

in “steady state,” point estimators based on

finite samples are typically biased.

To minimize bias, the standard experiment

design calls for a single, long replication

(perhaps with some data deletion at the

beginning).

Even in the best case this provides dependent

and nonnormal (but stationary) data for

statistical inference.



Notation

Xi1, Xi2, Xi3, . . . output from a single

replication of system i = 1,2, . . . , k

µi is the steady-state mean performance of

system i

Assume µk ≥ µk−1 ≥ · · · ≥ µ1 so that system k

is the best (although we don’t really know its

identity).

δ is a practically significant difference worth

detecting.

Our procedures focus on the sum of

differences through sampling stage r

r∑
j=1

(Xkj − Xij)

and an approximating Brownian motion

process B(r,∆), r ≥ 0.



Selection Events
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Background

Fabian (1974) showed how to specify the

continuation region to control the probability

of an incorrect selection for B(r,∆). The

probability of an incorrect selection is no

greater if we observe B(r,∆) only at integer

times.

Hartmann (1988, 1991) used this result to

derive fully sequential procedures for i.i.d.

normal data with equal variances (known or

unknown).

We extended this work to allow unequal

variances and common random numbers.

This talk is about extending such procedures

to stationary stochastic processes.



Extension to Stationary Processes

We can standardize the sum of differences in

such a way that it is well approximated by

B(r,∆) as the sample size gets large.

Cki(t) ≡
∑�nt�

j=1

(
(Xkj − Xij) − nt(µk − µi)

)
vki

√
n

for 0 ≤ t ≤ 1, where

v2
ki ≡ lim

n→∞n Var
[
X̄k(n) − X̄i(n)

]

FCLT: As n → ∞, Cki(t)
D−→ B(t),0 ≤ t ≤ 1.

Since v2
ki is unknown, we employ a strongly

consistent estimator—based on “batching”—

that is updated as we continue sampling.

We can show that limδ→0 Pr{CS} ≥ 1 − α if

the FCLT holds.



The Basic Procedure

Setup: Select 1 − α, δ, initial sample size n0
and batch size m0; choose a batching
sequence mr.

Initialization: Let I = {1,2, . . . , k} and
determine h

Obtain Xij, j = 1,2, . . . , n0, i = 1,2, . . . , k

Set r = n0 and mr = m0

Update: If mr has changed, then for all i 	= �
compute estimates of the asymptotic
variance mrV 2

i�(r)

Let Ni�(r) =
⌊

h2mrV 2
i�(r)

δ2

⌋

Ni(r) = max� 	=i Ni�(r)

If r > maxi Ni(r), stop and select best.
Otherwise go to Screening.



Screening: Set Iold = I. Let

I =
{
i : i ∈ Iold and

X̄i(r) ≥ X̄�(r) − Wi�(r),∀� ∈ Iold, � 	= i
}

where

Wi�(r) = max

{
0,

δ

2r

(
h2mrV 2

i�(r)

δ2
− r

)}

Stopping Rule: If |I| = 1, then stop. Or if

r = maxi Ni + 1, then stop.

Otherwise, take Xi,r+1 for i ∈ I,

set r = r + 1 and go to Screening.



Empirical Results

M/M/1 processes with k = 5, n0 = 24000 and ρ = 0.9

Sample average of total basic observations (×105)

batch size R+ KN+ KN++
12000 109.54 83.66 9.10
8000 52.46 36.10 8.11
6000 30.86 24.26 7.44
4800 26.40 19.09 7.01
4000 22.95 16.27 6.81
3000 20.29 12.94 6.29
2400 18.74 11.20 6.01
2000 17.52 10.15 6.00
1600 16.64 9.02 5.51
1000 13.95 6.98 4.91

Estimated PCS (0.95 nominal)

batch size R+ KN+ KN++
12000 0.984 0.989 0.949
8000 0.940 0.968 0.932
6000 0.891 0.943 0.914
4800 0.878 0.932 0.920
4000 0.864 0.927 0.894
3000 0.849 0.908 0.904
2400 0.831 0.898 0.900
2000 0.834 0.890 0.889
1600 0.835 0.878 0.882
1000 0.817 0.845 0.844




